学校工作总结 教学工作总结 教师工作总结 班主任工作总结 教学心得体会 师德师风建设 教学试卷 教案模板 教学设计 教学计划 教学评语 教学课件 学校管理
首页 > 教学资源 > 教案模板

高中数学教案设计模板(共17篇)

作者:快乐的业务员时间:2020-05-18 下载本文

第1篇:高中数学概念教学设计教案

篇1:新课程理念下的高中数学概念教学设计

新课程理念下的高中数学概念教学设计

《普通高中数学课程标准(试验)》(以下简称新课标)强调:数学教学的最终目的是培养学生的数学能力,数学教学应当使学生对数学概念本质达到理性认识。同时《高中数学教学大纲》指出:正确理解数学概念是掌握基础知识的前提。高中数学概念是高中数学知识基础的核心,是学生学好数学知识和培养数学能力的基础,是学生解题的出发点和突破口,所以数学概念也应该成为教学的着眼点和落脚点。

同时,教师在进行教学设计时,要充分考虑学生的真实感受,真正实现以学生为主体,激发学生的学习热情,让他们主动去探索,篇2:高中数学概念课型及其教学设计

高中数学概念课型及其教学设计

谭国华

【专题名称】高中数学教与学

【专 题 号】g312 【复印期号】2014年02期

【原文出处】《中学数学研究》(广州)2013年6上期第4~8页

【作者简介】谭国华,广州市教育局教研室(510030).在我国高中数学教学中,有按课型特点设计和组织教学的传统.但是,对于如何划分课型以及如何认识每一类课的一般结构特点等问题,一直以来都未得到很好的解决.究其原因,主要是我们过去对高中数学课型的研究基本上是依据广大教师的教学实践经验,对课型结构特点的归纳总结,或者只是泛泛而谈,提出一些基本原则,缺乏可操作性;或者因人而异,不同人的观点有很大的不同.因此,原有的课型理论对课堂教学的指导作用有限.在过去,由于受教育心理学特别是教学心理学发展所限,要想用心理学的研究成果来指导中小学课堂教学的研究也是心有余而力不足,更别说是用来指导课型的研究.但现在的情况大不相同了.从1980年代以来,教育心理学与中小学课堂教学的关系越来越紧密,对中小学课堂教学的指导作用越来越直接而有力.近几年,我们借助教育心理学的研究成果,特别是学习心理学和教学心理学的研究成果指导课型的研究,取得较为可喜的成效.具体做法是,一方面使高中数学课型的理论保持我国传统课型理论中课型的整体性与综合性特点,以方便操作;同时,融入现代学习理论关于学习分类的观点,对每一种课型中涉及的主要知识的类型及其学习的过程、有效学习的条件进行深入的分析,以此为高中数学教学设计奠定坚实的科学基础.本文仅对有关高中数学概念课型及其教学设计的研究成果作简要介绍.一、高中数学概念课型的基本特点

我国传统的课型概念有两种含义:一是指课的类型,它是按某种分类基准(或方法)对各种课进行分类的基础上产生的.例如,《中国大百科全书。教育卷》(1985年版)中关于课的类型,是指根据不同的教学任务或按一节课主要采用的教学方法来划分课的类别.二是指课的模型,它是在对各种类型的课在教学观、教学策略、教材、教法等方面的共同特征进行抽象、概括的基础上形成的模型、模式.在这种意义下,课型可以看作是微观的课堂教学模式.本文所指的课型主要是指课的类型,是根据一节课(有时是连续的两节或三节课)承担的主要教学任务来划分的,但是同时它也兼具课的模型的含义.这是因为根据教学心理学的有关理论,不同的教学任务分属不同的知识类型,而不同类型知识的学习过程与学习所需的内、外部条件是不同的,这就导致了不同的课堂教学结构.具有某种特点的课堂教学结构实际上就是微观的课堂教学模式,也即是课的模型.在高中数学教学中,数学概念可以划分为原始概念和定义性概念.原始概念一般是通过对一系列的例证直接观察和归纳而习得,这类概念一般不需单独设课讲授,只需结合其他概念或规则的学习附带进行即可习得.而定义性概念中的那些次要的和易学的数学概念往往也不单独设课讲授.但是,在高中数学概念中,有许多重要的定义性概念往往是要单独设课讲授的,这一类课是具有共同的课堂教学结构特点的,于是,我们将这一类需要单独设课讲授的、重要的定义性概念课统称为高中数学概念课型.1.教学任务分析

高中数学概念课型的主要教学任务是使学生掌握概念所反映的一类事物的共同本质属性,以及运用概念去办事,去解决问题.因此,高中数学概念学习主要应作为程序性知识学习.根据学习心理学关于定义性概念的学习过程与条件的分析,高中数学概念教学有三项内容:一是要明确数学概念是什么,也就是要帮助学生习得概念,这将涉及前面提到的四个方面即概念的名称、定义、属性和例证的分析;二是要运用概念去办事,即将习得的数学概念运用到各种具体情境中去解决相应的问题;三是要辨明相关概念间的关系,形成概念系统.其中前两项内容完全属于高中数学概念课型的教学任务,第三项内容中一般只有部分内容属于概念课型的教学任务,形成完整的概念系统则属于高中数学复习课型的教学任务,我们将在复习课型中进行讨论.2.学与教的过程和条件

高中数学概念学与教的一般过程可以以我国教育心理学家皮连生创立的“六步三段两分支”教学模型为线索进行分析.(具体内容请参见参考文献[1])

第一阶段:习得阶段

主要教学任务是帮助学生习得数学概念,明确数学概念是什么,重点是促进学生对所学数学概念的理解.教学中,帮助学生习得数学概念一般需要做好下面四件事情.首先,揭示概念所反映的一类事物的本质属性,给概念下定义.其次,辨别概念的正例和反例,并结合定义给予恰当的说明.再次,用不同的语言形式对概念加以解释,如将概念的定义由文字语言表述转换为用符号语言或图形语言表述.最后,对概念做深入分析,着重在以下四点:

①辨明所学数学概念与原有相关数学概念之间的关系;

②分析所学数学概念的其他一些重要属性或特征;

③分析所学数学概念及其形成过程中蕴含的数学思想方法;

④分析所学数学概念及其形成过程中蕴含的情感教育内容.当然,并非每一个数学概念的教学都要完成所有这些事情.对于一些简单的、次要的数学概念,有时只需完成前三件事情就可以了.习得概念的基本形式有两种:一种叫概念形成,另一种叫概念同化.①概念形成这是一种从辨别概念的例证出发,逐渐归纳概括出概念的本质属性的学习方式,其心理机制可用奥苏贝尔的上位学习模式来解释.(具体内容见参考文献[1])学与教的基本过程:

知觉辨别(提供概念的正例,引导学生分析概念例证的特征)→提出假设(对概念例证的共同本质特征作出假设)→检验假设,使假设精确化→概括(给概念下定义)→辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)→用不同的语言形式对概念加以解释→对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征).学习的内部条件(即学生自身应具备的条件):

学生必须能够辨别正、反例证.学习的外部条件(即教学应提供的条件):

第一,必须为学生提供概念的正、反例,正例应有两个或两个以上,正例的无关特征应有变化,以帮助学生更好地辨别概念的本质属性和非本质属性;正例应连续呈现,最好能同时 让学生意识到,以帮助学生形成概括.第二,学生必须能从外界获得反馈信息,以检验其所做的假设是否正确.第三,提供适当的练习,并给予矫正性反馈.采用概念形成的学习方式涉及如何给概念下定义的问题.明确概念的定义方式,对于教师更好地分析概念以及促进学生形成概括是有帮助的.在高中数学中,对于一些重要的数学概念大多数采用属加种差的定义方式.这里的属是指属概念,种是指种概念.属概念和种概念是指具有包含关系的两个概念,即如果概念a的外延真包含概念b的外延,则称概念a为概念b的属概念,而概念b即为概念a的种概念.通常,也称概念a为概念b的上位概念,而概念b即为概念a的下位概念.可用公式表示:

被定义概念=种差+最邻近的属概念.公式中,最邻近的属概念是指在被定义概念的所有上位概念中外延最小的上位概念(属概念),种差就是被定义概念在它的最邻近的属概念里区别于其他种概念的那些本质属性.例如,一元二次不等式的定义是:只含有一个未知数且未知数的最高次数是2的不等式叫做一元二次不等式.这个定义中,被定义概念是一元二次不等式;最邻近的属概念是不等式;种差是“只含有一个未知数且未知数的最高次数是2”,这是一元二次不等式独有的而且能够将一元二次不等式与其他不等式区别开来的本质属性.②概念同化概念同化是通过直接下定义来揭示一类事物的共同本质属性,从而习得概念的一种学习方式,其心理机制可用奥苏伯尔的下位学习模式来解释.学与教的基本过程:

呈现概念的定义

→分析定义,包括揭示概念的本质属性和构成定义的各部分的关系→辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)→用不同的语言形式对概念加以解释→对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征).学习的内部条件:

学生的原有认知结构中应具有同化新概念的适当的上位概念(或结构),而且这一上位概念(或结构)越巩固、越清晰就越有利于同化新的下位概念.学习的外部条件:

第一,言语指导,以帮助学生更好地理解概念的本质属性.第二,提供符合概念定义的正例和不符合概念定义的反例.第三,提供适当的练习,并给以矫正性反馈.第二阶段:转化阶段

第一阶段习得的概念仍属于概念的陈述性形式.若要运用概念对外办事,则还需将它转化为程序性形式,也就是转化为办事的技能.这是本阶段的主要教学任务,重点是要明确运用概念办事的情境和程序,并在一些典型的情境中尝试运用概念.转化的关键条件是要提供变式练习.运用数学概念办事大致可分两种情况:一种是为数学概念自己办事,解决与数学概念本身有关的问题;另一种是运用概念的本质属性和一些重要的非本质属性去解决有关数学运算、推理、证明问题以及解决实际问题.例如,函数概念的运用,一种是为函数自己办事,如求函数的解析式、函数值、定义域、值域,作函数的图象,判定函数的单调性和奇偶性,求函数的最值等;另一种是运用函数的概念、图象、性质等解决与方程、数列、不等式等相关问题,或建立函数模型解决实际问题.函数概念教学及变式练习的重点就在于熟练掌握每一种情境中办事的程序和步骤.第三阶段:迁移与应用阶段

这是第二阶段的延伸.通过变式练习,学生已能在一些典型的情境中运用概念,已初步形成运用概念对外办事的技能.本阶段是要进一步提供概念应用的新情境,以促进迁移,其关键条件是提供综合练习.综合练习中问题的类型或情境应多样化,和第二阶段相比有类似的,也有新的呈现,以有效地帮助学生在不同情境中独立运用概念解决问题.这一阶段既可在课内完成,也可在课外完成,但通常都要反复多次才能完成.3.高中数学概念课教学的基本程序

根据上面的分析,结合广义知识学与教的“六步三段两分支”教学模型,我们可以将高中数学概念课型教学的基本程序简要归纳为:

第一阶段:习得阶段(习得数学概念)

(1)引起注意与告知目标,使学生对学习新概念产生一定的预期,从而激发学生的学习动机.(2)提示学生回忆原有知识,以便为同化新概念做好准备.(3)引入概念,使学生初步感知概念的本质属性.这里,既要从学生接触过的具体内容引入,也要注意从数学内部提出问题.(4)采用概念形成或概念同化的形式帮助学生习得概念的陈述性形式,即理解概念.第二阶段:转化阶段(将习得的概念转化为办事的技能)

(5)通过变式练习促进学生将习得的陈述性形式的概念转化为程序性形式,即转化为办事的技能.第三阶段:迁移与应用阶段(运用概念对外办事)

(6)通过课外作业、复习、间隔练习和在后续课程内容中应用概念等多种形式,为学生提供概念应用的情境,促进保持与迁移.根据高中数学教学的特点,第一、二两个阶段的5步通常是在课内完成.第三阶段即第6步为概念的巩固、迁移和应用阶段,通常是在课外和后续的课程中完成.对于以学案自学为主的教学则需考察其学案编写以及教师课堂上提供的帮助是否有助于学生完成学习的三个阶段.二、高中数学概念课型教学设计举例

下面以《对数函数及其性质》(具体内容见参考文献[2]第2.2.2节)的教学过程分析为例,具体说明高中数学概念课型的教学设计过程.1.教学任务分析

本节教材有两项学习内容:

(1)对数函数的概念;

(2)反函数的概念.第(1)项内容属于定义性概念学习,需达到掌握水平.对对数函数概念的学习需采用数形结合方法从数和形两个方面展开.第(2)项内容也属于定义性概念学习.高中数学课程标准对反函数的学习要求已经降低.本课学习反函数的概念,主要为了帮助学生明确对数函数和指数函数间的关系,从而深化对数函数概念的理解.因此,本节教材主要是对数函数概念的学习,反函数概念的学习只需达到了解水平即可.本节教材的主要教学任务是对数函数概念的教学,属于概念课型,需按高中数学概念课的课型特点来设计整个教学过程.具体教学要做到三点:

第一,要帮助学生明确对数函数概念是什么,包括四个方面:对数函数的定义、名称、例 证和属性.根据函数的特点,对对数函数属性的讨论应包括形和数两个方面.第二,要运用对数函数概念去办事,教材主要要求能解决三方面问题:求对数型函数的定义域,比较两个对数值的大小,解决简单的实际问题.第三,要明确对数函数与指数函数及函数的关系.其中,辨明对数函数概念与指数函数概念的关系需要先介绍反函数概念.本节教材一般应安排2课时.第1课时学习对数函数的概念、图象与性质.第2课时学习运用对数函数解决简单的两数大小比较、运用对数函数模型解决简单实际问题和反函数概念.为了帮助学生形成运用对数函数概念去办事的能力,需要补充适量的变式练习题.2.教学的基本过程

第一阶段:习得阶段.习得对数函数的概念.第一步 引起注意与告知目标.通过本课的学习,学生应能做到:

(1)初步掌握对数函数的概念.包括:

①能陈述对数函数的定义,并能列举正例、反例加以说明;

②能用描点法画出具体对数函数的图象,并能用自己的话描述一般对数函数的图象特征和基本性质;

③能根据对数函数的单调性比较两个对数值的大小.(2)了解反函数的概念,进一步明确对数函数和指数函数之间的关系.(3)通过对实际问题的分析,能初步认识到对数函数模型与现实生活以及与其他学科的密切联系和应用价值,提高数学应用的意识.第二步 复习原有知识.对本课学习影响较大的原有知识,一是函数概念和指数函数概念,二是描点法画函数的图象.对数函数的定义是属加种差的定义方式,函数是其上位概念,也是其最邻近的属概念.因此,在学习新课之前,应帮助学生回忆函数和指数函数的定义,以及函数图象的画法.第三步 采用概念同化方式习得对数函数的定义.习得对数函数的定义可以采用概念形成的方式,也可以采用概念同化的方式.如采用概念形成方式则需列举两至三个正例.我们这里是采用概念同化方式.(1)引入概念

教材提供了一个引例:通过碳14的含量测量出土文物的年代.这个引例能起两方面的作用:一是使学生初步感知对数函数的概念;二是使学生认识对数函数的应用价值,激发学生的学习动机.教师应引导学生观察教材中给出的t和p的取值的对应表,体会“对每一个碳14的含量p的取值,通过对应关系的函数.(2)呈现并分析定义

根据对数函数的定义方式,分析时要讲清两点:一是最邻近的属概念,二是种差.在对数函数的定义中,最邻近的属概念是函数,函数与对数函数构成了上下位关系,即对数函数是一种函数;种差是指两个变量间的对应关系为(a>0,且a≠1),种差也就是对数函数,都有唯一的生物死亡年数t与之对应”,从而说明t是p区别于其他函数的本质属性,即对数函数是一类特殊的函数.分析定义的目的是为了帮助学生形成对定义的深入理解.教师可以提出一些问题供学生思 篇3:高一数学集合的概念教学设计

课 题:1.1集合-集合的概念

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合 授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

内容分析:

1.集合是中学数学的一个重要的基本概念,在小学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集,至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用。基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些知识可以帮助认识学习本章的意义,也是本章学习的基础。

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念。

第2篇:高中数学教案

教案

教学目标

(1)把握一元二次不等式的解法;(2)知道一元二次不等式可以转化为一元一次不等式组;(3)了解简单的分式不等式的解法;(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;(7)通过研究函数、方程与不等式之间的内在联系,使学生熟悉到事物是相互联系、相互转化的,树立辨证的世界观.教学重点:一元二次不等式的解法;教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.教与学过程设计

第一课时

Ⅰ.设置情境

问题: ①解方程

②作函数 的图像

③解不等式

置疑在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗? 回答函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注重色彩或彩色粉笔的运用

在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢? Ⅱ.探索与研究

我们现在就结合不等式 的求解来试一试。(师生共同活动用“非凡点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)答方程 的解集为

不等式 的解集为

置疑哪位同学还能写出 的解法?(请一程度差的同学回答)答不等式 的解集为

我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题: 假如相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)答二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)答 的解集依次是的解集依次是

它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。(教师巡视,重点关注程度稍差的同学。)Ⅲ.演练反馈 1.解下列不等式:(1)(2)(3)(4)2.若代数式 的值恒取非负实数,则实数x的取值范围是。3.解不等式(1)(2)参考答案: 1.(1);(2);(3);(4)R 2.3.(1)(2)当 或 时, ,当 时, 当 或 时,。

Ⅳ.总结提炼

这节课我们学习了二次项系数 的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。(五)、课时作业

(P20.练习等

3、4两题)(六)、板书设计

第二课时

Ⅰ.设置情境

(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢? Ⅱ.探索研究

(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,„„.教师分别请持上述见解的学生代表进一步说明各自的见解.)生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论轻易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.(待学生阅读完毕,教师再简要讲解一遍.)[知识运用与解题研究] 由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要把握了上一节课所学过的方法。我们就能求

解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)(1)(2)(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注重纠正表述方面存在的问题.)练习二 可化为一元一次不等式组来求解的不等式.目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如(或)的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)答因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).(1)[P20练习中第1大题](2)[P20练习中第1大题](3)[P20练习中第2大题](老师扼要讲评三位同学的解答.尤其要注重纠正表述方面存在的问题.然后讲解P21例5).例5 解不等式

因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解(或)之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

解:(略)现在请同学们完成课本P21练习中第3、4两大题。

(等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)[练习三]用“符号法则”解不等式的复式练习。(通过多媒体或其他载体给出下列各题)1.不等式 与 的解集相同此说法对吗?为什么[补充] 2.解下列不等式:(1)[课本P22第8大题(2)小题](2)[补充](3)[课本P43第4大题(1)小题](4)[课本P43第5大题(1)小题](5)[补充](每题均先由学生说出解题思路,教师扼要板书求解过程)参考答案: 1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。2.(1)(2)原不等式可化为: ,即

解集为。

(3)原不等式可化为

解集为

(4)原不等式可化为 或

解集为

(5)原不等式可化为: 或 解集为

Ⅲ.总结提炼

这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注重的是,这一方法对符合上述外形的高次不等式也是有效的,同学们应把握好这一方法。(五)布置作业

(P22.2(2)、(4);4;5;6。)(六)板书设计

第3篇:高中数学教案

我是来自理科组的数学老师周桂宇,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。首先我们先初步了解下高一数学整体的情况,从量上看,高一数学任务很重,高一上学期我们将要学,必修一全部内容,必修四第一章,高一下学期学必修四剩下内容,必修五全部内容,必修二其中几章;从质上看,好多同学才一接触到高一数学就觉得很难,难度并不在于知识点的深度和综合能力,而在于从初中相对具体形象的数学学习一下进入高中抽象的,与生活似乎关系不大的学习,很多同学表现出非常大不适应。因此,如果觉得高一数学“难”,复习的重点,应当放在分析为什么自己觉得学习过的知识点“难”上。

难点一:抽象函数

F(x)规则的含义虽然看起来简单,但如果理解不深刻,对于后面的解题有很大的影响。

难点二:三角函数

这一部分的重点是一定要从初中锐角三角函数的定义中跳出来。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的“统一论”,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。

难点三:向量部分 ,这部分其实是这学期最简单的部分。简单的原因是,以前从来没有学过,初次接触,考试不会太难。这部分的复习也最为轻松——围绕向量的几何表示,代数表示和坐标表示理解向量的各种运算法则。

难点四:综合题型 压轴题基本上,都是以函数一章作为最核心的知识载体,中间掺杂向量和三角的运算。解决这样的题目,方法几乎是固定的,那就是首先利用抽象函数性质,将带有f的条件化为不带有f的条件,然后利用三角与向量的运算化简或证明。非压轴题出题方法可能更自由,但是综合性往往没有太强,仍然属于各个板块内的综合。

对于本次课我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正

一、教材分析

函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.

根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标: 知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; 过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度. 根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.

二、教法学法

为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.

三、教学过程

函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.

(一)创设情境,提出问题

(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:

[教师活动]引导学生观察图象,提出问题:

问题1:说出气温在哪些时段内是逐步升高的或下降的?

问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.

(二)探究发现 建构概念

[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.

[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8

在学生对于单调增函数的特征有一定直观认识时,进一步提出:

问题3:对于任意的t

1、t2∈[4,16]时,当t1

[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.

[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当

时,都有 ”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

问题4: 类比单调增函数概念,你能给出单调减函数的概念吗? 最后完成单调性和单调区间概念的整体表述.

2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?

[教师活动]问题6:证明

[学生活动]步骤:取值

在区间(0,+ ∞)上是单调减函数.

作差变形

定号

判断.

[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(四)回顾反思深化概念

[教师活动]给出一组题:

1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R上的单调增函数还是单调减函数?

2、若定义在R上的单调减函数f(x)满足f(1+a)

的取值范围吗?

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:

(1)阅读课本P34-35例2

四、教学评价

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础

第4篇:高中数学教案

高中数学教案:不等式的证明

教学目标

1。掌握分析法证明不等式;

2。理解分析法实质——执果索因;

3。提高证明不等式证法灵活性.教学重点 分析法

教学难点 分析法实质的理解

教学方法 启发引导式

教学活动

(一)导入新课

(教师活动)教师提出问题,待学生回答和思考后点评。

(学生活动)回答和思考教师提出的问题。

[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法? [问题 2]能否用比较法或综合法证明不等式:

[点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法。(板书课题)

设计意图:复习已学证明不等式的方法。指出用比较法和综合法证明不等式的不足之处,激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式。

(二)新课讲授

【尝试探索、建立新知】

(教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评。帮助学生建立分析法证明不等式的知识体系。投影分析法证明不等式的概念。

(学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知。

[讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式。

[问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?bet365备用器

[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

[问题3]说明要证明的不等式成立的理由是什么呢?

[点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立。就是分析法的逻辑关系。

[投影]分析法证明不等式的概念。(见课本)

设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究。建立新的知识;分析法证明不等式。培养学习创新意识。

【例题示范、学会应用】

(教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题。

(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证。

例1 求证

[分析]此题用比较法和综合法都很难入手,应考虑用分析法。

证明:(见课本)

[点评]证明某些含有根式的不等式时,用综合法比较困难。此例中,我们很难想到从“ ”入手,因此,在不等式的证明中,分析法占有重要的位置,我们常用分析法探索证明途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要思维方法,事实上,有些

综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此。

例2 已知:,求证:(用分析法)请思考下列证法有没有错误?若有错误,错在何处? [投影]证法一:因为,所以、去分母,化为,就是。由已知 成立,所以求证的不等式成立。

证法二:欲证,因为 只需证,即证,即证

因为 成立,所以 成立。(证法二正确,证法一错误。错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误。)[点评]①用分析法证明不等式的逻辑关系是:

(结论)(步步寻找不等式成立的充分条件)(结论)

分析法是“执果索因”,它与综合法的证明过程(由因导果)恰恰相反。②用分析法证明时要注意书写格式。分析法论证“若A则B”这个命题的书写格式是: 要证命题B为真,只需证明 为真,从而有„„

这只需证明 为真,从而又有„„ „„

这只需证明A为真。

而已知A为真,故命题B必为真。要理解上述格式中蕴含的逻辑关系。

[投影] 例3 证明:通过水管放水,当流速相同时,如果水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大。

[分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为,则周长为 的圆的半径为,截面积为 ;周长为 的正方形边长为,截面积为,所以本题只需证明:

证明:(见课本)

设计意图:理解分析法与综合法的内在联系,说明分析法在证明不等式中的重要地位。掌 握分析法证明不等式,特别重视分析法证题格式及格式中蕴含的逻辑关系。灵活掌握分析法的应用,培养学生应用数学知识解决实际问题的能力。【课堂练习】bet365备用bd

(教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视学生的解题情况,对正确的证法给予肯定,对偏差及时纠正。点评练习中存在的问题。(学生活动)在笔记本上完成练习,甲、乙两位同学板演。【字幕】练习1。求证

2。求证:

设计意图:掌握用分析法证明不等式,反馈课堂效果,调节课堂教学。【分析归纳、小结解法】

(教师活动)分析归纳例题和练习的解题过程,小给用分析法证明不等式的解题方法。(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记。

1。分析法是证明不等式的一种常用基本方法。当证题不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目往往更是行之有效的。

2。用分析法证明不等式时,要正确运用不等式的性质逆找充分条件,注意分析法的证题格式。

设计意图:培养学生分析归纳问题的能力,掌握分析法证明不等式的方法。

(三)小结

(教师活动)教师小结本节课所学的知识。(学生活动)与教师一道小结,并记录笔记。

本节课主要学习了用分析法证明不等式。应用分析法证明不等式时,掌握一些常用技巧: 通分、约分、多项式乘法、因式分解、去分母,两边乘方、开方等。在使用这些技巧变形时,要注意遵循不等式的性质。另外还要适当掌握指数、对数的性质、三角公式在逆推中的灵活运用。理解分析法和综合法是对立统一的两个方面。有时可以用分析法思索,而用综合法书写证明,或者分析法、综合法相结合,共同完成证明过程。

设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识。

(四)布置作业

1。课本作业:P17

4、5。

2。思考题:若,求证

3。研究性题:已知函数,若、,且 证明

设计意图:思考题供学有余力同学练习,研究性题供学生研究分析法证明有关问题。

(五)课后点评

教学过程是不断发现问题、解决问题的思维过程。本节课在形成分析法证明不等式认知结构中,教师提出问题或引导学生发现问题,然后开拓学生思路,启迪学生智慧,求得问题解决。一个问题解决后,及时地提出新问题,提高学生的思维层次,逐步由特殊到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入,直到完成本节课的教学任务。总之,本节课的教学安排是让学生的思维由问题开始,到问题深化,始终处于积极主动状态。本节课练中有讲,讲中有练,讲练结合。在讲与练的互相作用下,使学生的思维逐步深化。教师提出的问题和例题,先由学生自己研究,然后教师分析与概括。在教师讲解中,又不断让学生练习,力求在练习中加深理解,尽量改变课堂上教师包括办代替的做法。

在安排本节课教学内容时,按认识规律,由浅入深,由易及难,逐渐展开教学内容,让学生形成有序的知识结构。作业答案: 思考题:

。因为,故,所以 成立。研究性题:令,则:,故原不等式等价于

由已知有。所以上式等价于,即。所以又等价于。因为,上式成立,所以原不等式成立。

不等式的实际解释

题目:不等式: 是正数,且,则。可以给出一个具有实际背景的解释:在溶液里加溶质则浓度增加,即个单位溶液中含有 个单位的溶质,其浓度小于加入 个单位溶质后的溶液浓度,请你仿照此例,给出两个不等式的解释。分析与解

1。先看问题中的不等式,建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比值应不小于10%,并且这个比值越大,住宅的采光条件越好。

我们知道如果同时增加相等的窗户面积和地板面积,那么住宅的条件变好。

设地板面积为平方米,窗户面积为平方米,若窗户面积和地板面积同时增加相等的平方米,住宅的采光条件变好了,即有

2。是正数,不等式 可以推出,我们可以用混合溶液来解释:两个不同浓度的溶液混合后,其浓度介于混合前两溶液浓度之间。

3。电阻串并联。电阻值为、的电阻,串联电阻为,并联电阻为,串联电阻变大,并联电阻变小,因此有不等式,即

说明 许多数学结论是由实际问题抽象为数学问题后,通过数学的运算演变得到的。反过来,把抽象的数学结论还原为实际解释也是一种数学运用,值得大家关注。

第5篇:高中数学教案

高中数学

必修1 第一章 集合与函数概念

1.1 集合1.2 函数及其表示

1.3 函数的基本性质

第二章 基本初等函数(Ⅰ)

2.1 指数函数

2.2 对数函数

2.3 幂函数

第三章 函数的应用

3.1 函数与方程

3.2 函数模型及其应用

必修2 第一章 空间几何体

1.1 空间几何体的结构

1.2 空间几何体的三视图和直观图

1.3 空间几何体的表面积与体积

第二章 点、直线、平面之间的位置关系

2.1 空间点、直线、平面之间的位置关系

2.2 直线、平面平行的判定及其性质

2.3 直线、平面垂直的判定及其性质 第三章 直线与方程

3.1 直线的倾斜角与斜率

3.2 直线的方程

3.3 直线的交点坐标与距离公式

第四章 圆与方程

4.1 圆的方程

4.2 直线、圆的位置关系

4.3 空间直角坐标系

必修3 第一章 算法初步

1.1 算法与程序框图

1.2 基本算法语句

1.3 算法案例

阅读与思考 割圆术

第二章 统计

2.1 随机抽样

阅读与思考 一个著名的案例

阅读与思考 广告中数据的可靠性

阅读与思考 如何得到敏感性问题的诚实反应

2.2 用样本估计总体

阅读与思考 生产过程中的质量控制图

2.3 变量间的相关关系

阅读与思考 相关关系的强与弱

第三章 概率

3.1 随机事件的概率

阅读与思考 天气变化的认识过程

3.2 古典概型

3.3 几何概型

必修4

第一章 三角函数

1.1 任意角和弧度制

1.2 任意角的三角函数

1.3 三角函数的诱导公式

1.4 三角函数的图象与性质

1.5 函数y=Asin(ωx+ψ)

1.6 三角函数模型的简单应用

第二章平面向量

2.1平面向量的实际背景及基本概念

2.2平面向量的线性运算

2.3平面向量的基本定理及坐标表示

2.4平面向量的数量积

2.5平面向量应用举例

第三章 三角恒等变换

3.1 两角和与差的正弦、余弦和正切公式

3.2 简单的三角恒等变换

必修5

第一章 解三角形

1.1 正弦定理和余弦定理

探究与发现 解三角形的进一步讨论

1.2 应用举例

阅读与思考 海伦和秦九韶

1.3 实习作业

第二章 数列

2.1 数列的概念与简单表示法

阅读与思考 斐波那契数列

阅读与思考 估计根号下2的值

2.2 等差数列

2.3 等差数列的前n项和

2.4 等比数列

2.5 等比数列前n项和

阅读与思考 九连环

探究与发现 购房中的数学

第三章 不等式

3.1 不等关系与不等式

3.2 一元二次不等式及其解法

3.3 二元一次不等式(组)与简单的线性规划问题

阅读与思考 错在哪儿

信息技术应用 用Excel解线性规划问题举例

3.4 基本不等式

选修1-1 第一章 常用逻辑用语

1.1 命题及其关系

1.2 充分条件与必要条件

1.3 简单的逻辑联结词

1.4 全称量词与存在量词

第二章 圆锥曲线与方程

2.1 椭圆

探究与发现 为什么截口曲线是椭圆

信息技术应用 用《几何画板》探究点的轨迹:椭圆

2.2 双曲线

2.3 抛物线

阅读与思考 圆锥曲线的光学性质及其应用

第三章 导数及其应用

3.1 变化率与导数

3.2 导数的计算

探究与发现 牛顿法──用导数方法求方程的近似解

3.3 导数在研究函数中的应用

信息技术应用 图形技术与函数性质

3.4 生活中的优化问题举例

实习作业 走进微积分

选修1-2

第一章 统计案例

1.1 回归分析的基本思想及其初步应用

1.2 独立性检验的基本思想及其初步应用

第二章 推理与证明

2.1 合情推理与演绎证明

阅读与思考 科学发现中的推理

2.2 直接证明与间接证明

第三章 数系的扩充与复数的引入

3.1 数系的扩充和复数的概念

3.2 复数代数形式的四则运算

第四章 框图

4.1 流程图

4.2 结构图

信息技术应用 用Word2002绘制流程图

数学 选修2-1

第一章 常用逻辑用语

1.1 命题及其关系

1.2 充分条件与必要条件

1.3 简单的逻辑联结词

1.4 全称量词与存在量词

第二章 圆锥曲线与方程

2.1 曲线与方程

2.2 椭圆

探究与发现 为什么截口曲线是椭圆

信息技术应用 用《几何画板》探究点的轨迹:椭圆

2.3 双曲线

探究与发现

2.4 抛物线

探究与发现

阅读与思考 第三章 空间向量与立体几何

3.1 空间向量及其运算

阅读与思考 向量概念的推广与应用

3.2 立体几何中的向量方法

选修 2-2 第一章 导数及其应用

1.1 变化率与导数

1.2 导数的计算

第三章 统计案例

3.1 回归分析的基本思想及其初步应用

3.2 独立性检验的基本思想及其初步应用

选修3-1

第一讲 早期的算术与几何

一 古埃及的数学

二 两河流域的数学

1.3 导数在研究函数中的应用

1.4 生活中的优化问题举例

第二讲

1.5 定积分的概念

1.6 微积分基本定理

1.7 定积分的简单应用

三 第二章 推理与证明

2.1 合情推理与演绎推理

第三讲

2.2 直接证明与间接证明

2.3 数学归纳法

二 第三章 数系的扩充与复数的引入

3.1 数系的扩充和复数的概念

四 3.2 复数代数形式的四则运算

第四讲

一 选修2-3

二 第一章 计数原理

1.1 分类加法计数原理与分步乘法计数

四 原理

第五讲

探究与发现 子集的个数有多少

1.2 排列与组合二

探究与发现 组合数的两个性质

1.3 二项式定理

第六讲

探究与发现 “杨辉三角”中的一些

一 秘密

二 第二章 随机变量及其分布

第七讲

2.1 离散型随机变量及其分布列

2.2 二项分布及其应用

探究与发现 服从二项分布的随机变

三 量取何值时概率最大

2.3 离散型随机变量的均值与方差

第八讲

2.4 正态分布

信息技术应用 μ,σ对正态分布的影

二 响

丰富多彩的记数制度

古希腊数学

希腊数学的先行者

毕达哥拉斯学派

欧几里得与《原本》

数学之神──阿基米德

中国古代数学瑰宝

《周髀算经》与赵爽弦图

《九章算术》

大衍求一术

中国古代数学家

平面解析几何的产生 坐标思想的早期萌芽

笛卡儿坐标系

费马的解析几何思想

解析几何的进一步发展

微积分的诞生

微积分产生的历史背景

科学巨人牛顿的工作

莱布尼茨的“微积分” 近代数学两巨星

分析的化身──欧拉

数学王子──高斯

千古谜题

三次、四次方程求根公式的发现

高次方程可解性问题的解决

伽罗瓦与群论

古希腊三大几何问题的解决

对无穷的深入思考 古代的无穷观念

无穷集合论的创立

集合论的进一步发展与完善 第九讲 中国现代数学的开拓与发展

一 中国现代数学发展概观

二 人民的数学家──华罗庚

三 当代几何大师──陈省身

选修3-3 引言

第一讲 从欧氏几何看球面

一平面与球面的位置关系

二 直线与球面的位置关系和球幂定理

三 球面的对称性

第二讲 球面上的距离和角

一 球面上的距离

二 球面上的角

思考题

第三讲 球面上的基本图形

一 极与赤道

二 球面二角形

三 球面三角形

1.球面三角形

2.三面角

3.对顶三角形

4.球极三角形

思考题

第四讲 球面三角形

一 球面三角形三边之间的关系

二、球面“等腰”三角形

三 球面三角形的周长

四 球面三角形的内角和

思考题

第五讲 球面三角形的全等

1.“边边边”(s.s.s)判定定理

2.“边角边”(s.a.s.)判定定理

3.“角边角”(a.s.a.)判定定理

4.“角角角”(a.a.a.)判定定理

思考题

第六讲 球面多边形与欧拉公式

一 球面多边形及其内角和公式

二 简单多面体的欧拉公式

三 用球面多边形的内角和公式证明欧

拉公式

思考题

第七讲 球面三角形的边角关系

一 球面上的正弦定理和余弦定理

二 用向量方法证明球面上的余弦定理

1.向量的向量积

2.球面上余弦定理的向量证明

三 从球面上的正弦定理看球面与平面

四 球面上余弦定理的应用──求地球上两城市间的距离

思考题

第八讲 欧氏几何与非欧几何

一平面几何与球面几何的比较

二 欧氏平行公理与非欧几何模型──庞加莱模型

三 欧氏几何与非欧几何的意义

阅读与思考 非欧几何简史

选修3-4 引言

第一讲平面图形的对称群

一平面刚体运动

1.平面刚体运动的定义

2.平面刚体运动的性质

思考题

二 对称变换

1.对称变换的定义

2.正多边形的对称变换

3.对称变换的合成4.对称变换的性质

5.对称变换的逆变换

思考题

三平面图形的对称群

思考题

第二讲 代数学中的对称与抽象群的概念

一 n元对称群Sn

思考题

二 多项式的对称变换

思考题

三 抽象群的概念

1.群的一般概念

2.直积

思考题

第三讲 对称与群的故事

一 带饰和面饰

思考题

二 化学分子的对称群

三 晶体的分类

四 伽罗瓦理论

选修4-1 第一讲 相似三角形的判定及有关性质

一平行线等分线段定理

二平行线分线段成比例定理

三 相似三角形的判定及性质

1.相似三角形的判定

2.相似三角形的性质

四 直角三角形的射影定理

第二讲 直线与圆的位置关系

一 圆周角定理

二 圆内接四边形的性质与判定定理

三 圆的切线的性质及判定定理

四 弦切角的性质

五 与圆有关的比例线段

第三讲 圆锥曲线性质的探讨

一平行射影

二平面与圆柱面的截线

三平面与圆锥面的截线

选修 4-2 引言

第一讲 线性变换与二阶矩阵

一 线性变换与二阶矩阵

(一)几类特殊线性变换及其二阶矩阵

1.旋转变换

2.反射变换

3.伸缩变换

4.投影变换

5.切变变换

(二)变换、矩阵的相等

二 二阶矩阵与平面向量的乘法

(二)一些重要线性变换对单位正方形区域的作用

第二讲 变换的复合与二阶矩阵的乘法

一 复合变换与二阶矩阵的乘法

二 矩阵乘法的性质

第三讲 逆变换与逆矩阵

一 逆变换与逆矩阵

1.逆变换与逆矩阵

2.逆矩阵的性质

二 二阶行列式与逆矩阵

三 逆矩阵与二元一次方程组

1.二元一次方程组的矩阵形式

2.逆矩阵与二元一次方程组

第四讲 变换的不变量与矩阵的特征向量

一 变换的不变量——矩阵的特征向量

1.特征值与特征向量

2.特征值与特征向量的计算

二 特征向量的应用

1.Aa的简单表示

2.特征向量在实际问题中的应用

学习总结报告

选修4-4 引言

第一讲 坐标系

一平面直角坐标系

二 极坐标系

三 简单曲线的极坐标方程

四 柱坐标系与球坐标系简介

第二讲 参数方程

一 曲线的参数方程

二 圆锥曲线的参数方程

三 直线的参数方程

四 渐开线与摆线

学习总结报告

选修4-5 引言

第一讲 不等式和绝对值不等式

一 不等式

1.不等式的基本性质

2.基本不等式

3.三个正数的算术-几何平均不等式

第四讲 数伦在密码中的应用

二 绝对值不等式

1.绝对值三角不等式

2.绝对值不等式的解法

第二讲 讲明不等式的基本方法

一 比较法

二 综合法与分析法

三 反证法与放缩法

第三讲 柯西不等式与排序不等式

一 二维形式柯西不等式

二 一般形式的柯西不等式

三 排序不等式

第四讲 数学归纳法证明不等式

一 数学归纳法

二 用数学归纳法证明不等式

学习总结报告

选修4-6 引言

第一讲 整数的整除

一 整除

1.整除的概念和性质

2.带余除法

3.素数及其判别法

二 最大公因数与最小公倍数

1.最大公因数

2.最小公倍数

三 算术基本定理

第二讲 同余与同余方程

一 同余

1.同余的概念

2.同余的性质

二 剩余类及其运算

三 费马小定理和欧拉定理

四 一次同余方程

五 拉格朗日插值法和孙子定理

六 弃九验算法

第三讲 一次不定方程

一 二元一次不定方程

二 二元一次不定方程的特解

三 多元一次不定方程

一 信息的加密与去密

二 大数分解和公开密钥

学习总结报告

附录一 剩余系和欧拉函数

附录二 多项式的整除性

选修4-7 引言

第一讲 优选法

一 什么叫优选法

二 单峰函数

三 黄金分割法——0.618法

1.黄金分割常数

2.黄金分割法——0.618法

阅读与思考 黄金分割研究简史

四 分数法

1.分数法

阅读与思考 斐波那契数列和黄金分割

2.分数法的最优性

五 其他几种常用的优越法

1.对分法

2.盲人爬山法

3.分批试验法

4.多峰的情形

六 多因素方法

1.纵横对折法和从好点出发法

2.平行线法

3.双因素盲人爬山法

第二讲 试验设计初步

一 正交试验设计法

1.正交表

2.正交试验设计

3.试验结果的分析

4.正交表的特性

二 正交试验的应用

学习总结报告

附录一

附录二

附录三

选修4-9 引言

第一讲 风险与决策的基本概念

一 风险与决策的关系

二 风险与决策的基本概念

1.风险(平均损失)

2.平均收益

3.损益矩阵

4.风险型决策

探究与发现 风险相差不大时该如何决策

第二讲 决策树方法

第三讲 风险型决策的敏感性分析

第四讲 马尔可夫型决策简介

一 马尔可夫链简介

1.马尔可夫性与马尔可夫链

2.转移概率与转移概率矩阵

二 马尔可夫型决策简介

三 长期准则下的马尔可夫型决策理论

1.马尔可夫链的平稳分布

2.平稳分布与马尔可夫型决策的长期准则

3.平稳准则的应用案例

学习总结报告

附录

第6篇:高中数学教学设计

2011年陕西师范大学家教资格考试

教学设计

题目:《等差数列》教学设计

考生姓名:赵春丽 设计科目:数学

学 号: 41005211 专业班级:数学四班

高中数学教学设计

学科:数学 年级:高二 课题名称:等差数列

一、课程说明

(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。(二)学生分析:此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。(三)教学目标:

1.通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2.通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。

3.在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

4.让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。

5.让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。(四)教学重点: 1.让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。

2.能够灵活运用公式并且能把相应公式与题相结合。

(五)教学难点:

1.让学生掌握公式的推导及其意义。 2.如何把所学知识运用到相应的题中。

二、课前准备

(一)教学器材

对于一对一教教采用传统讲课。一张挂历。

(二)教学方法

通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。

(三)课时安排

课时大致分为五部分:

1.联系实际提出相关问题,进行思考。 2.以我教她学的模式讲授相关章节知识。

3.让学生练习相关习题,从所学知识中找其相应解题方案。 4.学生对知识总结概括,我再对其进行补充说明。5.布置作业,让她课后多做练习。

三、课程设计 (一)提出问题 【引入】根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?

思考 1)2)3)1,3,5,7,9.......2,4,6,8,10.......6,6,6,6,6......这些每一行有什么规律?

(二)分析问题并讲解

1.通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”

2.设首项为 a1,公差为d。由思考题 1)2)3)可观察出什么?由学生通过她的发现来推导总结出

ana1(n1)dnd(a1d

3.通过分析通项公式的特点,做下题(学生自己分析,思考来做。)例:已知在等差数列{an}中,a520,a2035,试求出数列的通项公式?

通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质: 等差数列{an},{bn} 1)

ana1anamd(nm1,n,mN)。

n1nm2)若mnpq(m,n,p,qN)

pq则2anapaq。则amanapaq(反之不真)。3)若mn,2m4)am,amk,am2k,am3k,,amnk也构成等差数列,公差为kd。

5)a1a2am,am1am2a2m,a2m1a2m2a3m,也构成等差数列,其公差为md。

26)数列{can差数列。7)

d}为等差数列,{anbn},{anbn}为等a1ana2an1a3an2akan1k

让学生根据所讲性质做练习题 练习: 1)a1a4a715,a2a4a645

{an}为等差数列,求an?

2)已知等差数列{an},a133,a775

求a2,a3,a4,a5,a6及an?

4.由以上公式,性质,让学生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。5.总结,串讲当日所学

给出题目:12349899100 让她求其和Sn,并思考如何快速计算?

(三)布置作业

1.总结当日所学。 2.做练习册上章节习题。

3.根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。

四、设计理念

以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。

五、教学设计反思

本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。

教学设计要符合学生特点,才能更好地帮助学生学习。

第7篇:高中数学教学设计

高中数学教学设计——函数的奇偶性

函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性. 教学目标

1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的. 任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 教学设计

一、问题情景

1.观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

2.观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

2.提出问题,组织学生讨论

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?(f(x)不一定是偶函数)

(2)奇、偶函数的图像有什么特征?

(奇、偶函数的图像分别关于原点、y轴对称)(3)奇、偶函数的定义域有什么特征?(奇、偶函数的定义域关于原点对称)

三、解释应用 [例 题]

1.判断下列函数的奇偶性.

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

任取x1>x2>0,则-x1<-x2<0.

∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是增函数.

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

2.f(x)=-x3|x|的大致图像可能是()

3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

四、拓展延伸

1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性.(2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数.

4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

第8篇:高中数学教学设计

新课改下高中数学教学设计

张星,薛永红

教学设计的优劣对于提高教学质量,培养学生思维,调动学生的积极性有着十分重要的意义。在实施高中数学新课改的今天,怎样完成一个优秀的教学设计呢?我们认为应该从以下几个方面着手:

一、教学设计应有利于让学生学会学习,发挥学生的主体作用

传统的课堂设计,常常是“教师问,学生答,教师写,学生记,教师考,学生背。”在这样教学下,学生机械被动地学习,不能主动对话、沟通、交流。久而久之,他们学习数学的兴趣会逐渐褪去。新课程标准要求教师必需转变角色,尊重学生的主体性,以新的理念指导设计教学。在教学过程中,要根据不同学习内容,使学习成为在教师指导下自动的、建构过程。教师是教学过程的组织者和引导者,教师在设计教学目标,组织教学活动等方面,应面向全体学生,突出学生的主体性,充分发挥学生的主观能动性,让学生自主参与探究问题。

二、教学设计应注重初高中知识的衔接问题

初高中数学存在巨大差异,高中无论是知识的深度、难度和广度,还是能力的要求,都有一次大飞跃。由于大部分学生不适应这样的变化,又没有为此做好充分的准备,仍然按照初中的思维模式和学习方法来学习高中数学知识,不能适应高中的数学教学,于是在学习能力有差异的情况下而出现了成绩分化,学习情绪急降。作为教师应特别关注此时的衔接,要充分了解学生在初中阶段学了哪些内容?要求到什么程度?哪些内容在高中阶段还要继续学习等等,注意初高中数学学习方式的衔接,重视培养学生正确对待困难和挫折的良好心理素质,适应性能力,重视知识形成过程的教学,激发学生主动的学习动机,加强学法指导,引导学生阅读、归纳、总结,提高学生的自学能力,善于思考、勇于钻研的意识。

三、教学设计应考虑到学生当前的知识水平

我校学生,大部分是居于中等及以下的学生,基础知识、基本技能、基本数学思想方法差,思维能力、运算能力较低,空间想象能力以及实践和创新意识能力更无须谈说。因此数学学习还处在比较被动的状态,存在问题较多,主要表现在:

1、学习懒散,不肯动脑;

2、不订计划,惯性运转;

3、忽视预习,坐等上课,寄希望老师讲解整个解题过程,依赖性较强,缺乏学习的积极性和主动性;

4、不会听课,如像个速记员,边听边记,笔记是记了一大本,但问题也有一大堆;有的则一字不记,只顾听讲;有的学生只当听老师讲故事时来精神等等;

5、死记硬背,机械模仿,教师讲的听得懂,例题看得懂,就是书上的作业做不起;

6、不懂不问,一知半解;

7、不重基础知识,基本方法,基本技能,而对那些偏、难、怪题感兴趣,好高骛远,影响基础学习;

8、不重总结,轻视复习。因此教师需多花时间了解学生具体情况、学习状态,对学生数学学习方法进行指导,力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,统一指导与个别指导结合,促进学生掌握正确的学习方法。只有凭借着良好的学习方法,才能达到“事半功倍”的学习效果。

四、教学设计中教师应以科学的眼光审视教材

高中数学新课程是具有厚实的数学专业和教育教学理论与实践水平的专家群体,经过深思熟虑、系统地分析教学的情况和学生的实际来编写的。很多内容编排很好,我们应该尊重教材,但我们不应迷信教材,认请教材的思路与意图,理解教材中所蕴藏的知识、技能、情感与价值等层面上的内涵,同时也应该用批判的眼光去审视它,不迷信教材,在此基础上,要挖掘和超越教材,做到既忠实教材,又不拘泥于教材,结合本校、本班学生的实际情况,创新出最适合自己所教学生的题目,启发、诱导学生进行深入的体验和感悟,真正做到“走进教材,又走出教材。”

五、教学设计应注重新课的导入与新知识的形成过程

教师在授课过程中,应适时、适度地引出新课题,创设出最佳的教学气氛,引起学生对本课题的兴趣。

常用的课题导入的几种类型有 1.创设生产生活化情境导入课题 2.讲故事引入课题。

3.设置悬念,以疑激趣引入课题

4.在旧知识的基础上发展成新知识再引入课题 5.由习题、试题引出来的研究性课题 6.通过类比发现新知识引入课题

六、教学设计应注重从学生的角度进行教学反思

教学行为的本质在于使学生受益,教得好是为了促进学得好。在讲习题时,当我们向学生介绍一些精巧奇妙的解法时,特别是一些奇思妙解时,学生表面上听懂了,但当他自己解题时却茫然失措。我们教师在备课时把要讲的问题设计的十分精巧,连板书都设计好了,表面上看天衣无缝,其实,任何人都会遭遇失败,教师把自己思维过程中失败的部分隐瞒了,最有意义,最有启发的东西抽掉了,学生除了赞叹我们教师的高超的解题能力以外,又有什么收获呢?所以贝尔纳说“构成我们学习上最大障碍的是已知的东西,而不是未知的东西” 大数学家希尔伯特的老师富士在讲课时就常把自己置于困境中,并再现自己从中走出来的过程,让学生看到老师的真实思维过程是怎样的。人的能力只有在逆境中才能得到最好的锻炼。经常去问问学生,对数学学习的感受,借助学生的眼睛看一看自己的教学行为,是促进教学的必要手段。

第9篇:《高中(中专)数学》教案

第一章 集合与逻辑用语(14学时)........................................................................................................2 第二章

不等式(10学时)......................................................................................................................3 第三章 函数(20学时)............................................................................................................................4 第四章 三角函数(5学时)....................................................................................................................6 总复习(7学时)........................................................................................................................................6

第一章 集合与逻辑用语(14学时)

教学目的:

1.从学生熟悉的例子引出集合的概念,理解空集和全集的意义,通过描述集合的概念使学生掌握集合的确定性、互异性和无序性,掌握集合的列举法和描述法;

2.使学生熟悉掌握集合与集合之间的三种关系,理解子集、真子集,会用符号表示元素与集合,集合与集合的关系,集合的三种运算,理解交集、并集和补集;

3.使学生熟悉掌握逻辑用语,命题的概念,懂得用“且”“或”“非”连接而成的复合命题的真值的判定,理解充分条件、必要条件和充要条件的意义。

教学重点、难点:本章重点是集合与集合之间的三种关系,集合的三种运算,充分条件和必要条件,难点是“p或q” “p且q” “非p”的真值的判定。

教学时数:14学时

教学方法:系统讲授与启发法相结合一、导入新课

从学生熟悉的例子引出集合的概念,使学生认识到掌握集合的重要性。

二、讲授新课

从学生熟悉的例子引出集合的概念,通过描述集合的概念使学生掌握集合的确定性、互异性和无序性,掌握集合的列举法和描述法。集合与集合之间的三种关系,包含于、真包含于和相等;讲解空集和全集的意义,子集、真子集的关系,集合的三种运算,交集、并集和补集的文氏图表示;逻辑用语,命题的概念,介绍判断命题真假的方法,从命题p和命题q的真值去判断“p或q” “p且q” “非p”的真值,讲解充分条件、必要条件和充要条件的意义。

第二章

不等式(10学时)

教学目的:

1.使学生了解不等式的性质,会应用基本性质进行简单的不等式变形;

2.理解不等式解集的概念,理解区间的概念,要求学生用区间表示不等式的解集; 3.在复习总结一元一次不等式的解法的基础上,掌握一元一次不等式组的解法; 4.理解一元二次不等式的概念,理解并掌握一元二次不等式的求解过程,会求一元二次不等式的解集;

5.理解分式不等式的概念,会解简单的分式不等式;

6.理解绝对值的几何意义,掌握含有绝对值的不等式的解法。

教学重点、难点:本章重点是一元一次不等式组的解法,一元二次不等式的求解过程,分式不等式的求解,含有绝对值的不等式的解法,难点是区间的概念,解一元二次不等式的分解因式法。

教学时数:10学时

教学方法:系统讲授与启发法相结合一、复习引新 浏览复习上次授课内容。

二、讲授新课

在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系是基本的数学关系。它们在数学研究和数学应用中起着重要作用。这抽象出实数集R的一条重要性质:任何两个实数都可以比较大小。由此产生了不等式,不等式在研究客观世界的数量关系中起着重要的作用。不等式是数学的基础内容之一,在研究函数的定义域、单调性、最大最小值问题以及研究数列和函数的极限问题,描述平面上的区域问题,线性规划,优化问题等等都要运用不等式的知识。详细讲解不等式的性质、不等式的解集与区间、不等式组的解法、一元二次不等式、分式不等式的解法、含有绝对值的不等式、本章小结和复习题二。

第三章 函数(20学时)

教学目的:

1.使学生了解映射的概念;

2.理解函数的概念,了解函数的三种表示法,理解分段函数的定义及表示法; 3.掌握一元二次函数的性质及其图像,掌握解一元二次不等式与一元二次函数之间的关系;

4.了解反函数的概念,掌握简单函数的反函数的求法,了解函数y=f(x)的图像与它的反函数y=f-1(x)的图像之间的关系;

5.理解函数的单调性和奇偶性;

6.了解n次根式的概念,理解分数指数幂的概念; 7.了解实数指数幂的概念,理解实数指数幂的运算法则; 8.了解几个常见幂函数的图像和性质;

9.理解指数函数的概念,掌握指数函数的图像和性质; 10.了解指数函数在实际问题中的应用,指数增长和指数衰减; 11.理解对数的概念,掌握对数的性质;

12.理解对数函数的定义,掌握对数函数的图像和性质,掌握积、商、幂的对数公式;

13.会用待定系数法求一次函数和二次函数的解析式; 14.了解函数的实际应用。

教学重点、难点:本章重点映射的概念,函数的概念和图像,函数的单调性、奇偶性,实数指数幂的运算法则,幂函数的性质和图像,指数函数的性质和图像,对数的概念,对数的计算,对数函数的图像和性质,积、商、幂的对数公式,待定系数法。难点是映射的概念,分段函数的图像以及分段函数的实际应用,反函数的概念,分数指数幂的概念,对数的概念,指数函数与对数函数的应用,函数的实际应用。

教学时数:20学时

教学方法:系统讲授与谈论法相结合一、复习引新

浏览复习上次授课内容。二、讲授新课

本章教材共分三部分,第一部分为函数,第二部分是函数的性质,第三部分是指数与指数函数,对数与对数函数。

现实世界中许多量之间有依赖关系,一个量变化时另一个量随着起变化,函数是研究各个量之间确定性依赖关系的数学模型,在工业革命时代,函数是数学中最基本的概念之一。映射作为日常生活中许多现象的抽象,能更好的理解函数的概念,反函数的概念。函数的图像是数形结合的基础,要让学生理解函数的图像的意义。

由函数的图形引出奇函数和偶函数的概念。

运用映射的观点阐述反函数的概念,给出反函数的求法。

为了解决实际生活中呈指数增长的量的倍增期,和呈指数衰减的量的半衰期的问题,需要对数函数。

将指数概念加以推广,从整数指数幂推广到有理数指数幂,进一步推广到实数指数幂,并且需要实数指数幂的运算法则。

待定系数法是数学中的一种重要方法,要使学生会用待定系数法求一次函数和二次函数的解析式。

第四章 三角函数(5学时)

教学目的:

1.使学生理解角的概念的推广,理解弧度的意义,会进行弧度和角度的换算; 2.理解正弦函数、余弦函数、正切函数的定义,了解余切函数、正割函数、余割函数的定义,掌握特殊角度的三角函数值。掌握同角三角函数的基本关系。教学重点、难点:本章重点是三角函数的概念,同角三角函数的基本关系式。教学时数:5学时

教学方法:系统讲授与启发法相结合 一、复习引新

浏览复习上次授课内容。二、讲授新课

详细讲解角的概念、弧度制、三角函数的概念、同角三角函数的基本关系式

总复习(7学时)

第10篇:高中数学教案(指数)

§2.1.1指数

教学目的:(1)掌握根式的概念;

(2)规定分数指数幂的意义;

(3)学会根式与分数指数幂之间的相互转化;

(4)理解有理指数幂的含义及其运算性质;

(5)了解无理数指数幂的意义

教学重点:分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质 教学难点:根式的概念,根式与分数指数幂之间的相互转化,了解无理数指数幂.教学过程:

一、引入课题

1. 以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性

2. 由实例引入,了解指数指数概念提出的背景,体会引入指数的必要性;

3. 复习初中整数指数幂的运算性质;

amanamn

(am)namn

(ab)nanbn

4. 初中根式的概念;

如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根;

二、新课教学

(一)指数与指数幂的运算

1.根式的概念

一般地,如果xa,那么x叫做a的n次方根(n th root),其中n>1,且n∈N. * n当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号a表示.

式子a叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).

当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正的n次方根用符号a表示,负的n次方根用符号-a表示.正的n次方根与负的n次方根可以合并成±a(a>0).

由此可得:负数没有偶次方根;0的任何次方根都是0,记作0.

思考:(课本P58探究问题)an=a一定成立吗?.(学生活动)

结论:当n是奇数时,ana

当n是偶数时,an|a|

例1.(教材P58例1).

解:(略)

巩固练习:(教材P58例1)

2.分数指数幂

正数的分数指数幂的意义

规定: a(a0)a(a0)

aam(a0,m,nN*,n1)

am

nmn1

am

n1am(a0,m,nN*,n1)

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.有理指数幂的运算性质

(1)a·aarrrs

(a0,r,sQ);(a0,r,sQ);(a0,b0,rQ).(2)(ar)sars(3)(ab)raras

引导学生解决本课开头实例问题

例2.(教材P60例

2、例

3、例

4、例5)

说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用.

巩固练习:(教材P63练习1-3)

4. 无理指数幂

结合教材P62实例利用逼近的思想理解无理指数幂的意义.

指出:一般地,无理数指数幂a(a0,是无理数)是一个确定的实数.有理数指数

幂的运算性质同样适用于无理数指数幂.

思考:(教材P63练习4)

巩固练习思考::(教材P62思考题)

例3.(新题讲解)从盛满1升纯酒精的容器中倒出11升,然后用水填满,再倒出升,33

又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?

解:(略)

点评:本题还可以进一步推广,说明可以用指数的运算来解决生活中的实际问题.

三、归纳小结,强化思想

本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化

繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.

第11篇:高中数学教案23

第二十三教时

教材: 充要条件(1)

目的: 通过实例要求学生理解充分条件、必要条件、充要条件的意义,并能够初步判断给定的两个命题之间的关系。过程:

一、复习:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:

1)若x>0则x2>0;2)若两个三角形全等,则两三角形的面积相等;

3)等腰三角形两底角相等; 4)若x2=y2则 x=y。

(解答略)

二、给出推断符号,紧接着给出充分条件、必要条件、充要条件的意义

1.由上例一: 由x>0,经过推理可得出x2>0

记作:x>0  x2>0表示x>0是x2>0的充分条件

即: 只要x>0成立 x2>0就一定成立x>0蕴含着x2>0;

同样表示:x2>0是x>0的必要条件。

一般:若p则q, 记作pq 其中p是q的充分条件, q是p的必要条件

显然:x2>0 x>0 我们说x2>0不是x>0的充分条件

x>0也不是x2>0的必要条件

由上例二: 两个三角形全等  两个三角形面积相等

显然, 逆命题两个三角形面积相等两个三角形全等

∴我们说: 两个三角形全等是两个三角形面积相等的充分不必要条件

两个三角形面积相等是两个三角形全等的必要不充分条件

由上例三: 三角形为等腰三角形  三角形两底角相等

我们说三角形为等腰三角形是三角形两底角相等的充分且必要条件,这种既充分又必要条件,称为充要条件。由上例四:显然 x2=y2 x=y

x2=y2 是x=y的必要不充分条件;x=y 是x2=y2的充分不必要条件。

三、小结: 要判断两个命题之间的关系,关键是用什么样的推断符号把两个命题联结起来。

四、例一:(课本P34例一)

例二:(课本P35-36 例二)

练习P35、P36

五、作业:P36-37习题1.8

第12篇:高中数学集合教案

集合与集合的表示方法

(详案)系别: 专业: 学号: 姓名:

数学科学学院

数学与应用数学 201200701082 刘晓程

一、教学目标

1.知识与技能目标

1.切实理解、掌握集合的定义.

2.正确判定元素与集合的关系,熟练使用符号,理解集合中元素的涵义.

3.掌握几种常用数集、熟练掌握集合的表示方法

2.过程与方法目标

引导学生通过观察、归纳、猜想、验证,对具体情境中的数学信息作出合理的解释,能用集合来描述事物的数学关系,培养学生发现问题、分析问题、解决问题的能力。

3.情感、态度与价值观目标

(1)通过形象生动的例子来陶冶学生的情操;

(2)通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。

二、教学重点、难点与关键

教学重点:集合与集合的性质

教学难点:集合与集合的性质

教学关键:集合的表示方法

三、教学方法

本节课采用观察、归纳、启发探究相结合的教学方法,运用现代化多媒体教学手段,进行教学活动。首先按照由特殊到一般的认知规律,由形及数、数形结合,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对集合的全面的体验和理解。在确定集合的性质和寻求生活实例中的集合的过程中,引导学生观察、比较、分析和概括,以小组讨论的形式,进行合作探究.

四、教学过程

一、提出问题、引入新课

1、请写出小于10的自然数;(0、1、2、3、4、5、6、7、8、9)

2、请写出小于9的偶数。

(2、4、6、8)

二、开始新课

一、集合的与元素的定义

一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

练习1:下列指定的对象中,能构成一个集合的是(124)

1、你所在的班级中,体重超过60kg的学生的全体;

2、大于5的自然数全体;

3、班级里性格开朗的女生的全体;

4、英语字母的全体;

5、与1接近的实数的全体。

二、集合、元素的表示:

集合通常用英文大写字母A、B、C···来表示,它们的元素通常用英文小写字母a、b、c···来表示。

三、集合与元素的关系:

如果a是集合A的元素,就说a属于集合A,记作aA,读作“a属于A”;反之,如果a不是集合A的元素,就说a不属于集合A,记作aA,读作“a不属于A”。

例如:A表示方程X=1的解的集合,则1A,2A

四、集合中元素的性质:

(1)确定性:集合中的元素必须是确定的。

如:xA或xA必居其一

(2)互异性:集合的元素必须是互异或不相同的。

如:方程x—2x+1=0的解集为{1}而非{1,1}(3)无序性:集合中的元素是无先后顺序的。

如:{1,2},{2,1}为同一集合五、集合的分类:

根据含有的元素的个数分为:有限集和无限集

问题:我们看这样一个集合:

{x│xx10}它有什么特征?

显然这个集合没有任何元素,我们把这样的集合叫做空集,记作φ。练习2.(1)0------φ(2){0}------φ 重要的特定数集:

非负整数集(自然数集):N={0,1,2,3,4„};

正整数集:N或N*={1,2,3,4,„};

整数集:Z.

有理数集:Q;

实数集:R; 2

六、集合的表示方法:

(1)列举法:把集合的元素一一列举出来写在大括号内,这种表示集合的方法叫做列举法.

注意:用列举法表示集合时,列出的元素要求不遗漏,不增加,不重复,但与元素的列出顺序无关。

例如:A={xN│0

2述集合的方法.(常用于表示无限集),一般格式如下: {××××∣××××××××} ↑ ↑ ↑

该集合中的 分隔号 这些元素具有什么共同

元素是什么 性质、特征或表达式?

例如:{-1,1}; {x│x=1} 大于3的全体偶数构成的集合; {x│x>3, 且x=2n,nN}

练习3:用列举法表示下列集合:

1.大于0.9并且小于4.9的自然数的集合: 2.15的正因数的集合:

3.绝对值等于2的整数的集合: 用描述法表示下列集合:

1.绝对值等于5的实数的全体构成的集合: 2.不小于-2的全体实数的全体构成的集合: 3.梯形的全体构成的集合:

课堂小结:

1.集合的定义及其元素 2.集合、元素的表示 3.集合与元素的关系 4.集合元素的性质 5.集合的分类 6.集合的表示方法

课后作业:

教科书习题1.1-A第1、2、3题

习题1.1-B第2、3题

1、使同学们初步理解集合的概念,知道常用数集的概念及记法;

2、使同学们初步了解“属于”关系的意义;

3、使同学们初步了解有限集、无限集、空集的意义

第13篇:高中数学环保教案

会泽实验高中

一、背景说明:由于环境原因,许多城市都已实行限量用水。然而,如何做才能真正节约水呢?能节多少水?可以减少家庭多少水费的支出?让学生通过自己的调查和查看水表,了解家中用水的情况,并对采取节水措施前后用水量变化的现象进行分析,利用已有的数学知识进行统计和有关计算。通过讨论找出解决问题的方法。最后,和家人一起制订出一套合适的家庭节水方案。

二、活动的目的与意义:增强学生的节水意识,主动参与意识,保护环境从我做起从身边做起的意识。 参加人员:高二(1)班全体学生

三、课时安排:6---8课时

四、活动过程:

(一)提出问题 引导关注

(提前布置:向家人了解家庭用水情况。)

1、提出问题:

(1)你家几口人?一个月用多少吨水?交多少水费?

(2)为什么每个家庭月用水量不一样?

(3)为什么要节约用水?怎样才能做到节约用水?

(二)展开探究 自主学习

1、设计研究方案

(1)收集、整理需要研究的问题。(减少家庭用水)

(2)共同制定研究问题的方案。

① 通过讨论拟订家庭节水措施。

a、刷牙时关上水龙头。

b、在淋浴中涂肥皂时关上水。

c、安装(或改造成)节水马桶。

d、淘米洗菜用过的水再做它用。

e、把衣服储满后才用洗衣机清洗,清洗衣服后的水再做它用。

f、随时关紧水龙头,安装节水龙头。

② 设计调查表格。

(3)出示水表挂图——复习查看水表的方法。(劳动课已学)

2、实施调查项目 整理调查结果

(1)记录:家中一周用水量(单位:吨)。采取节水措施后,再记录家中一周用水量。

注意:调查期间,除节水措施外,其它条件不要发生变化。

(2)计算:节水前后家中用水量的变化。如果水费价格为1.11元/吨,你们家一月可节约水费多少元?一年可节约水费多少元?将计算结果告诉父母及同学。(3)作图:将节水前后的家中用水量及水费的变化,用条形统计图或折线统计图来表示。张贴在教室里。(4)分析、比较调查结果。

(5)得出结论:采取节水措施后,减少了家庭用水。

3、了解水资源现状 进一步提高节约用水的意识(1)播放资料:地球上水资源分布状况。我国各大城市水资源现状。马鞍山市城市居民用水的来源。(2)讨论:

①地球是个水球有70%的水域面积,为什么说可供人类饮用的水十分有限?

②人类的活动对自然界水域的水质有哪些影响?

③了解马鞍山市水价调整情况,国家有关水的政策、法令等资料。(4)思考;了解了水资源的现状后,你什么打算?

如果是从我做起,你能作些什么?

(三)实践应用 深化拓展

1、制订家庭节水方案:根据你家实际情况和家人一起制订一套适合的家庭节水方案。

2、集体交流:在全班交流各自的节水措施及活动体会。

3、综合分析,达成共识,再次制订适合多数家庭的节水措施。向全校师生发出实施家庭节水的倡议,并将倡议书张贴在社区。号召更多的家庭都能做到节约用水。

4、辅导学生将活动中的感悟撰写成科学小论文或调查报告。

5、表扬节水活动中做得好的学生及家庭,相互交流经验,鼓励大家坚持下去。

6、制定新一轮的研究计划。

五、预期的成果:

1、使学生初步掌握节约用水的方法,知道节约用水不仅可以减少家庭开支,更重要的是节约资源。

2、使学生会收集整理资料

3,、能够增强学生的节约用水意识,主动参与意识,保护环境从我做起。

第14篇:高中数学教案14

第十四教时

教材: 苏大《教学与测试》P13-16第七、第八课

目的: 通过教学复习含绝对值不等式与一元二次不等式的解法,逐步形成教熟练的技巧。过程:

一、复习:1.含绝对值不等式式的解法:(1)利用法则;

(2)讨论,打开绝对值符号

2.一元二次不等式的解法:利用法则(图形法)

二、处理苏大《教学与测试》第七课 —含绝对值的不等式

《课课练》P13 第10题:

设A=(a1)2(a1)2

xxB={x|2≤x≤3a+1}是否存在实数a的值,分别使得:(1)A

22∩B=A 

解:∵(a1)2(a1)2(a1)2

2x22∴ 2a≤x≤a2+1

∴ A={x|2a≤x≤a2+1}

(1)若A∩B=A则AB∴ 2≤2a≤a2+1≤3a+1 1≤a≤3

(2)若A∪B=A则BA

∴当B=Ø时 2>3a+1 an

当BØ时 2a≤2≤3a+1≤a2+1无解

∴ an

三、处理《教学与测试》第八课 —一元二次不等式的解法

《课课练》 P19 “例题推荐”3

关于x的不等式x2kxk

x2x33对一切实数x恒成立,求实数k的取值范围。

解:∵ x2x+3>0恒成立∴ 原不等式可转化为不等式组:

2x2k3x9k0

k3x9k0由题意上述两不等式解集为实数

4x2

(2)A∪B=A

29k71k389k0∴ 54k7 254k54k3169k02

即为所求。

四、作业:《教学与测试》第七、第八课中余下部分。

第15篇:高中数学教案全集

高中数学教案全集

第三章教案090801

戴亨钊

张青春

一、考纲要求: 1.事件与概率

(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

(2)了解两个互斥事件的概率加法公式。2.古典概型

(1)理解古典概型及其概率计算公式。

(2)会计算一些随机事件所包含的基本事件数及事件发生的概率。3.随机数与几何概型

(1)了解随机数的意义,能运用模拟方法估计概率。(2)了解几何概型的意义。

二、命题趋势

由于概率统计知识与实际生活密切相关,预计在以后的高考题中将越来越受重视,除以传统的选择题,填空题出现外,解答题也会出现。在实际应用于求概率等问题,主要考查学生的动手能力,分析能力及对基础知识的运用能力。

高考中本章试题难度不大,但考试遇到新题时大多数同学觉得很困难,所以,平时应该把常见的各种题型都练习到,各种类型的解法都掌握住,考试时以不变应万变。

(1)以中低难度为主,在复习中主要以基础知识的内容为主,不应做偏题,难题。(2)把古典概型和几何概型作为复习的重点。

(3)应注意培养自身利用概率知识对实际问题进行分析的能力。

三、基础知识,点式突破 知识点1 随机现象(1)随机现象 ① 必然现象:在一定条件下必然发生的现象。如“地球每天绕太阳转动”为必然现象。② 随机现象:在一定条件下多次观察同一现象,每次观察到的结果不一定相同。如“某射击运动员每一次射击命中的环数”为随机现象。

(2)实验及实验结果

为了探索随机现象的规律性,需要对随机现象进行观察,我们把观察随机现象或为了某种目的而进行的实验统称为实验。把观察结果或实验结果称为实验结果。

(3)随机试验

条件每实现一次,叫做进行一次实验,如果实验结果事先无法确定,并且可以重复进行,这种实验就叫做随机实验。如“从盛有3个排球,2个足球的框子里任取一球,取得排球的事件中,取出一球(不管是排球还是足球)就是一次实验。若把5个球全部取出,则做了5次试验。

知识点2

事件与基本事件空间

(1)必然事件:我们把在条件S下,一定会发的事件,叫做相对于条件S的必然事件。简称必然事件。

比如,“导体通电时发热”,“抛一石块,下落”等都是必然事件。

(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条S的不可能事件,简称不可能事件。必然“在标准大气压下温度低于0冰融化”,在常温常压下,铁融化“等都是不可能事件。

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件,简称确定事件。(4)随机事件:在条件S下可能发生也可能不发生的事件的随机事件,简称随机事件。比如:“李强射击一次,不中靶”,“掷一枚银币出现反面”都是随机事件。

注意:要搞清楚随机现象和随机事件之间的关系。随机现象是随机事件产生的原因,随机事件是随机现象的可能结果,是随机现象的反映。

(5)事件及其表示方法:确定事件和随机事件称为事件,一般用大写字母A,B,C表示。(6)基本事件:在试验中不能再分的最简单的随机事件,其他事件可以用他们来表示,这样的事件称为基本事件。

(7)基本事件空间:所有基本事件构成的集合称为基本事件空间,基本事件空间常用表示 知识点3 频率与概率 1.频率与概率

(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=率

(2)概率及其记法:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(3)频率与概率的区别与联系 ① 频率本身是随机的,在试验前不能确定。做同样次数的重复试验得到事件的频率会不同。

② 概率是一个确定的数,与每次试验无关。是用来度量事件发生可能性大小的量。③ 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。2随机事件的概率P(A)的范围

对于任何事件的概率的范围是:0≤P(A)≤1 其中不可能事件的概率是P(A)=0,必然事件的概率是P(A)=1 不可能事件与必然事件是一般事件的特殊情况 知识点4 概率的加法公式(1)互斥事件 ① 定义:不可能同时发生的两个事件即事件A发生,事件B不发生;事件B发生,事件A不发生叫做互斥事件(或称不相容事件)

② 从集合角度看,记事件A为集合A,事件B为集合B,若事件A与事件B是互斥事件,则集合A与集合B 交集为空集。

③ 推广:如果事件A1,A2,An中任何两个都互斥,就称事件A1,A2,An彼此互斥。从集合角度看n个事件彼此互斥是指各个事件所含结果的集合彼此互斥,(2)对立事件 ① 定义:不能同时发生且必有一个发生的两个事件叫做互为对立事件,事件A的对立事件记作

nA为事件A出现的概nA

② 从集合的角度看,A和A所含结果组成的集合是全集中互为补集的两个集合,这时A和

A的交集是不可能事件,A和A的并集是必然事件,即AA= , AA

(3)互斥事件与对立事件的区别与联系 ① 两个对立事件一定是互斥事件,反之两个互斥事件不一定是对立事件。② 两个事件对立是两个事件互斥的充分非必要条件 ③ 两个事件互斥是两个事件对立的必要非充分条件。(4)事件的并(或和)① 定义:由事件A和B至少有一个发生(即A发生或B发生或A,B都发生,称为事件A与B的并(或和)记作CAB

② 事件A与事件B的并集等于事件B与事件A的并集,即AB=BA ③ 并事件有三层含义:事件A发生,事件B不发生;事件B发生,事件A不发生;事件A与事件B都发生。

④ 事件A与B的并集AB可推广如下:“A1A2An”表示这样一个事件:在同一实验中:A1,A2,,An中至少有一个发生,即表示A1A2An发生。

(5)互斥事件的概率加法公式 

如果事件A,B互斥,那么AB发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(AB)=P(A)+P(B)

① 一般地,如果事件A1,A2,,An两两互斥(彼此互斥)那么时事件“A1A2An”发生(是指A1,A2,,An至少有一个发生)的概率,等于这n个事件发生的概率和,即P(A1A2An)=P(A1)P(A2)P(An)

② 对立事件的概率公式

若事件A与B互为对立事件,则AB为必然事件,所以P(AB)=1,又 P(AB)=P(A)+P(B),所以P(A)=1-P(B)[说明] a.公式使用的前提必须是对立事件,否则不能使用此公式。

b.当一事件的概率不易直接求,但其对立事件的概率易求时,可运用此公式,即使用间接法求概率。

(6)概率的一般加法公式 ①交(积)事件

若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B交事件(或称积事件),记作AB(或AB)a.用集合形式表示;

b.事件A与事件B的交事件等于事件B与事件A的交事件,即AB=BA ②概率的一般加法公式

设A,B是的两个事件,则P(AB)P(A)P(A)P(AB)知识点5

古典概型 1.基本事件及其特点(1)基本事件的定义

实验结果是有限个,且每个事件都是随机事件的事件,称为基本事件。

注意: ①基本事件是实验中不能再分的最简单的随机事件,其他事件可以用他们来表示;

②所以的基本事件都有有限个; ③每个基本事件的发生都是等可能的(2)基本事件的特点 ① 任何两个基本事件是互斥的 ② 任何事件都可以表示成基本事件的和 2.古典概型(1)古典概型的定义

我们把具有:①实验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。以上两个特点的概率模型称为古典概率模型,简称古典概型。

(2)古典概型是一种特殊的概率模型,其特征是: ① 有限性,在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本条件。② 等可能性,每个基本事件发生的可能性是均等的 [说明]

一个实验是否为古典概型,在于这个实验是否具有古典概型的两个特征:有限性和等可能性。并不是所有的实验都是古典概型。

(3)古典概率模型的概率求法

如果一次实验中的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是如果某个事件A包含了其中的m个等可能的基本事件,那么事件A发生的概率为P(A)=

1,nm n知识点6

几何概型(1)几何概型的概念

事件A理解为区域的某一子区域A,A的概率只与子区域A的几何度量(长度,面积或体积)成正比,而与A的位置和形状无关。满足以上条件的实验称为几何概型。

注意:①古典概型适用于所有实验结果是有限个且结果是等可能出现的情况,而几何概型则适用于实验结果是无穷多的情形。

③ 几何概型的特征:每个实验结果有无限多个,且全体结果可以用一个有度量的几何区域来表示;每次试验结果的各种结果是等可能的(2)几何概型的概率计算公式

在几何概型中,事件A的概率定义为:P(A)=

A,其中表示区域的几何度量,A表示子区域A的几何度量。

(3)古典概型与几何概型的区别

古典概型与几何概型要求基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求事件有无限多个。

例题分析

【例题1 】

(1)单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案,如果考生掌握了考查内容,他可以选择唯一正确的答案,假设考生不会做,他随机选择一个答案,问他答对的概率是多少?

(2)国家安全机关监听录音机记录了两个间谍的谈话,发现30min长的磁带上,从开始30s处起,有10s长的一段内容含两间谍犯罪的信息,后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了,那么由于按错键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?

【分析】(1)中考生随机地选择一个答案是指选择A、B、C、D的可能性是相等的,且实验的可能结果只有4;选择A、选择B、选择C、选择D,基本事件共有4,是有限个,故该实验是古典概型,基本事件个数为4个,答对只有一种结果,即m=1,n=4,可利用古典概率公式

m,求出事件的n概率。

(2)中工作人员在0min到30min之间的时间段内任一时刻按错键的可能性是相等的,且按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间长度有关,故该实验是几何概型。工作人员在0s-30s内任一时刻按错键,则含有犯罪内容的谈话会被全部擦掉,若在30s-40s内任一时刻按错键,则含有犯罪内容的谈话被部分擦掉,所以所求事件占的长度为40s,即2min,而整个长度为30min,可利用几何概型的概率公式P(A)= A,求得事件的概率。3答对所包含的基本事件的个数1==0.25; 44【解析】(1)有古典概型的概率计算公式得: P(答对)=(2)设事件A“按错键使含有犯罪内容的谈话被部分或全部擦掉”,事件A发生就是在0min到

2min32时间段内按错键,所以A=min,=30min,P(A)= A=

323= 1

45301 45【答】(1)考生答对的概率为0.25;(2)按错键使含有犯罪内容的谈话被部分或全部擦掉的概率为【例题2】(1)向假设的三个相邻的军火库投掷一颗炸弹,炸中第一个军火库的概率为0.025,炸中其余两个军火库的概率为0.1,只要炸中其中一个,另外两个也要发生爆炸,求军火库发生爆炸的概率。

(2)甲乙两人各射击一次,命中率各为0.8和0.5,两人同时命中的概率为0.4,求甲乙两人至少有一人命中的概率。

【分析】(1)中投掷的一颗炸弹,只要炸中了其中的一个军火库,其余也要发生爆炸,所以“军火库发生爆炸”这一事件,就是炸中第一、第二、第三个军火库这三个事件之和,且它们彼此互斥,由于是三个彼此互斥事件的并的概率,可利用公P(ABC)P(A)P(B)P(C)求得(2)中至少有一人命中,可看成是甲命中和乙命中这两事件的并事件,但“甲命中”和“乙命中”可能会同时发生不是互斥事件,由于是求两个不互斥事件的概率,可利用一般的概率加法公式P(AB)P(A)P(A)P(AB)求得

【解析】(1)设以A、B、C分别表示炸中第一、第二、第三个军火库这三个事件,于是

P(A)=0.025,P(B)=P(C)=0.1.设D表示军火库爆炸,则有D=ABC,由于A、B、C彼此互斥,P(D)= P(ABC)P(A)P(B)P(C)=0.025+0.1+0.1=0.225(2)设事件A为“甲命中”,事件B为“乙命中”,则“甲、乙两人至少有一人命中”为事件AB,所以P(AB)P(A)P(A)P(AB)=0.8+0.5-0.4=0.9 【答】(1)甲乙两人至少有一人命中的概率0.225(2)甲乙两人至少有一人命中的概率0.9 【例题3 】

同时抛掷两个骰子(各个面上分别标有数1,2,3,4,5,6)求向上的数之积为偶数的概率。

【分析】

每掷一个骰子都有6种情况,同时掷两个骰子总的结果数为n=6×6,由于每个结果出现的可能性都相等,所以是古典概型。关键是求“向上的数之积为偶数”这一事件所包含的结果数m,然后利用P(A)= m,即可求得概率,向上的数之积为偶数的情况比较多,可以先考虑其对立事件,n即向上的数之积为奇数,向上的数之积为奇数的基本事件有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,即m=9 【解析】基本事件空间(x,y)1x6,1y6,xN,yN共包含36个基本事件,设“向上的数之积为偶数”为事件A,则A为“向上的数之积为奇数”,A={(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}共包含9个事件,根据古典概型的概

1391,由对立事件的性质知,1-P(A)=1-=

443643【答】向上的数之积为偶数的概率为

4率公式可得P(A)【小结】

在求等可能事件的概率时,一定要先根据事件的个数是否有限,判断该试验是古典概型还是几何概型。①对于古典概型试验概率的计算,关键是分清楚基本事件的个数n与事件A中包含的结果数m,有时需用列举法把基本事件一一列举出来,在利用公式P(A)=

m求出事件的概率,这是一n个比较直观的好方法,但列举时必须按某一顺序做到不重复,不遗漏;②对于几何概型试验概率的计算,关键是求得事件A所占的区域和整个区域的几何度量,然后代入公式即可求解。几何概型常用来解决与长度、面积、体积有关的问题。③互斥事件的概率加法公式仅适用于彼此互斥的事件的和(并)事件的概率求解,因此在应用公式之前,应先判断各个事件彼此是否互斥,若不互斥,则需要用一般概率加法公式。④利用对立事件概率公式解题

第16篇:高中数学教案25

第二十五教时

教材:简易逻辑、四种命题、反证法、充要条件;《教学与测试》

11、12、13课 目的:复习上述教学内容,要求学生对有关知识的掌握更加牢固,理解更加深刻。过程:

一、复习:

1、简易逻辑:(1)命题的概念—能判断真假

(2)逻辑联结词及复合命题:“或”、“且”、“非”

(3)复合命题的真假—真值表,简单复合命题的否定

2、四种命题:(1)四种命题—原命题、逆命题、否命题、逆否命题

(2)四种命题的关系:互逆、互否、互为逆否及其真假

3、反证法: 步骤及如何导出“矛盾”

4、充要条件:(1)有关意义:充分条件,必要条件,充要条件—强调利用推断符号

(2)充要条件与四种命题的关系

二、处理《教学与测试》第11课 P21-22

口答为主

例一:主要强调“命题”的意义

例二:首先要写出三种简单复合形式,然后判断其真假。例三:注意训练将常用的命题“改写”成三种不同形式以利解题

三、处理《教学与测试》第12课 P23-24

例一:注意命题的否定形式,尤其是简单复合命题的否定形式。

例二:强调由原命题写出其他三种命题。例三:突出反证法的步骤及注意事项。

四、处理《教学与测试》第13课 P25-26

例一:要能利用推断符号判断充分条件,必要条件和充要条件。

例二:突出三个(或以上)命题的充要条件的判断方法。

例三:体现充要条件的应用。

五、作业:上述三课中余下部分(其中相当的部分可做在书上)

第17篇:高中数学复数教案

高中数学复数教案

教学目标:(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(2)正确对复数进行分类,掌握数集之间的从属关系;(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.

教学重点难点:复数的概念,复数相等的充要条件.用复平面内的点表示复数M.

以及复数的运算法则

教学过程:

一、复习提问:

1.复数的定义。

2.虚数单位。

二、讲授新课

1.复数的实部和虚部:

复数z=a+bi中中的a与b分别叫做复数的实部和虚部

2.复数相等

如果两个复数的实部与虚部分别相等,就说这两个复数相等。

3.用复平面(高斯平面)内的点表示复数

复平面的定义:立了直角坐标系表示复数的平面,叫做复平面.

复数可用点 来表示.其中x轴叫实轴,y轴 除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上. 4.复数的几何意义:

复数集c和复平面所有的点的集合是一一对应的. 5.共轭复数

(1)复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)(2)a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.(3复平面内表示两个共轭复数的点z与 关于实轴对称. 6.复数的四则运算:加减乘除的运算法则。小结:

1.在理解复数的有关概念时应注意:

(1)明确什么是复数的实部与虚部;

(2)弄清实数、虚数、纯虚数分别对实部与虚部的要求;

(3)弄清复平面与复数的几何意义;

(4)两个复数不全是实数就不能比较大小。

2.复数集与复平面上的点注意事项:

(1)复数 中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写。

(2)复平面内的点Z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。

(3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。

(4)复数集C和复平面内所有的点组成的集合一一对应: 3复数的四则运算的规律和方法。

高中数学教案设计模板百度文库

中学生交通安全教案设计模板(共17篇)

造型表现教案设计模板(共17篇)

中学教师英语教案设计模板(共17篇)

初中九年级英语教案设计模板(共17篇)

《初中九年级英语教案设计模板(共17篇).docx》
初中九年级英语教案设计模板(共17篇)
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
相关文章
猜你喜欢