大文斗范文网会员为你整理了“勾股定理第一课时教学设计人教版”5篇范文,希望对你有参考作用。
篇1:人教版勾股定理教学设计
人教版勾股定理教学设计篇一
一、问题背景
师:同学们,到目前为止,你所知道的有关直角三角形三边数量关系的结论有哪些?
生:首先是任意两边大于第三边。
师:任意两边大于第三边?
生: 任意两边之和大于第三边
师: 任意两边之和大于第三边。那比如说,我现在给大家一个直角三角形ABC(黑板图示),你能够用符号语言来描述吗?
生: a 加上b 大于c
师: 好的。a+b>c ,我们选择两条直角边的和大于斜边。非常好,还有没有?
生: 还有斜边一定是大于a 或者b 。
师 : 斜边大于任何一条直角边,到目前为止,我们知道直角三角形三边有这样一种关系,那么直角三角形三边是否还存在某种等量关系?今天我们一起来探究直角三角形三边的数量关系。直角三角形的三边的确存在某种等量关系。据记载,在公元前1100 年,在我国的商朝时期,人们曾发现了直角三角形三边的数量关系,但当时的发现只是一些特例。在公元前5 世纪和6 世纪的时候,希腊的数学家毕达哥拉斯发现了直角三角形的三边数量关系。据记载,当时发现了这个关系之后,人们非常的高兴,宰了100 头牛来作为庆祝。可见,这个定理的发现是非常的着名,而且非常的了不起。那我想知道,同学们是否有兴趣在这一堂课当中,通过自己的努力再发现直角三角形三边的数量关系呢?
生(齐):有!
师 : 大家都很有信心。但是,直接去找它的数量关系是不是感到有些困难,无从入手?我给大家一些提示,尝试学习一下古人用面积法来探究直角三角形三边的数量关系。
请同学们在方格纸上三角形ABC外,画一个以AC为一边的正方形,画一个以BC为边的正方形;再求出这两个正方形的面积。(如图1--1)
(一名学生上黑板画图,教师巡视、指导。)学生画好后
师:怎样画以AB为边的正方形呢?(学生思考,部分学生窃窃私语)
师:哪位同学愿意上来画?(少数同学欲举手,但还犹豫)
师:请李斯婷上黑板画一下;
教师巡视中发现:许多同学画“以AB为边的正方形”时,正方形的另外两个顶点不是格点,使求面积发生困难。
师:请同学们思考:以AB为边的正方形的另两个顶点是不是格点?为什么?
如图1--2,作△ADE≌△BCA,则AE=AB,AE⊥AB,同样可作△EGF≌△ADE,得到EF=AE,EF⊥AE,连结BE,四边形AEFB就是以AB为边的正方形,所以,它另外两个顶点E、F一定是格点。(
学生遇到困难,教师及时点拔、指导,这是学生自主学习过程中不可忽缺的,也是学生自主探究活动取得实效,教师应做的工作。)
师:如图2--1,P、Q是两格点,你能快速画出以PQ为一边的正方形吗?试一试!请宋彬贤上黑板画。教师巡视,指导有困难的学生画图
师:请同学们思考:怎样求出图1-2中,以AB为一边的正方形的面积?(由于不知道边长,学生“冷场” )
师:假设每格的长为1,请每组前后两桌四位同学为一小组讨论,然后我们一起交流!(课堂气氛活跃、热烈起来。约一分钟后有学生举手,教师和他进行了个别交流,随后举手的同学又有一些。)
师:请同学们来交流思路与方法。
生(阮颖旋):我用割补法。
师:请把你的方法用图展示一下。
阮颖旋走上讲台,教师用展示平台投影出该生的示意图(如图3)。
师:实际上,该同学是用横、竖网格线将正方形分割成四个直角三角形加中间一个小正方形(如图3),非常漂亮。学生赞叹
生(刘世航):我用补形法,在正方形各边上补一个直角三角形在形外,变成一个大的正方形。
师:请把你的方法用图展示一下。
生(刘世航):走上讲台,教师用展示平台投影出该生的示意图(如图4)
师:实际上,该同学是用横、竖网格线(过原正方形的顶点)将正方形补成一个大正方形(如图4),原正方形的面积等于大正方形的面积减去四个直角三角形的面积的差。非常漂亮!结果是多少?
生(刘世航):等于25
师:图2--2中,以PQ为一边的正方形的面积等于多少?
生:等于4× ×4×2+22=20
师:图2--2中,三个正方形的面积有什么关系?
二、定理探索
师:请同学们在图5中,考察各直角三角形周围的三个正方形的面积之间的关系。( 学生独立操作,教师巡视。)
师:同桌的同学相互讨论一下,(约半分钟后)谁来讲一讲考察结果?(有许多同学举手)请李梅同学……
生(李梅):大正方形减小正方形等于第三个正方形
生(洁婷):两个小正方形相加等于大正方形
生(炯辉):两个小正方形面积相加等于大正方形面积
……
师:同学们都发现了其中的关系,炯辉讲得最好;由此你能说出这些直角三角形三边之间的关系吗?
生(李梅):两边平方和等于第三边的平方
生(洁婷):两直角边的平方和等于斜边的平方
师:你真棒!这就是在数学史上具有里程碑意义、非常着名的勾股定理(板书课题),即:直角三角形中,两直角边的平方和等于斜边的平方。(投影)但这仅仅是在几个直角三角形(有具体数值)中发现的,在任意一个直角三角形(斜边为c、两直角边为a、b)中是否仍成立(a2+b2=c2)呢?(投影)
师:请同学们用课前准备好的四个全等的直角三角形在桌面上拼图,围成一个正方形可以吗?(教师巡视)
师:比一比,谁的图形漂亮?(教师继续巡视)
师:谁愿把自己拼(围)得到的优美图案与大家共享?(同学们纷纷举手。)
师:同学们自由上台展示(可一起上台)
教师拿出课前准备的“双面胶”供学生在黑板上粘贴。
师:如图6、图7的图案真漂亮,图7还是2002年在北京召开的国际数学家大会的会徽呢!请同学们计算一下图6的大正方形(外围)面积。学生思考、演算
生(潘思婷):面积为c2+2ab
师:介绍一下算法。
生(潘思婷):中间小正方形的面积为c2,再加四个直角三角形的面积就行了。
师:还有什么不同方法呢?
生(宋彬贤):大正方形的边长就是a+b,所以大正方形的面积就等于(a+b)2
师:很好!两位同学的结果,形式不一样。但同一图形的面积值是相等的。由此你可得出什么结果?
生(潘思婷):c2+2ab=(a+b)2
师:能简化吗?
生(潘思婷):能,结果是c2=a2+b2
生(齐):哇!就是勾股定理哎。学生的脸上流露出欣喜、愉悦的表情。这就是成就感!是教师课堂教学的最大成功。
师:刚才我们通过图6的面积计算,验证了勾股定理;能否在图7中,通过面积计算,验证勾股定理?图7中,大正方形的面积=c2或4( ab)+(a-b)2.步骤类似于图6中的验证过程。
师:至此,我们已用两种方法证明了勾股定理,从勾股定理的发现到今,已有了400多种证明方法,同学们课后有兴趣可查阅有关资料。
三、小结
师:什么样的三角形适合用勾股定理?如何用代数式表示勾股定理?你能用一种方法证明勾股定理?(郑晓珊、苏俊辉在黑板做)
生:(齐)点评。
(布置作业:书后69页 第1,2,3题)
(铃响,圆满完成教学任务)师生下课。
篇2:勾股定理教学设计
教学目标具体要求:
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:
勾股定理的应用
难点:
勾股定理的应用
教案设计
一、知识点讲解
知识点1:(已知两边求第三边)
1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为xx。
2.已知直角三角形的两边长为3、4,则另一条边长是xx。
3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长?
知识点2:
利用方程求线段长
1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,
(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?
(2)DE与CE的位置关系
(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?
利用方程解决翻折问题
2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的'点F处(折痕为AE).想一想,此时EC有多长?
3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
二、课堂小结
谈一谈你这节课都有哪些收获?
应用勾股定理解决实际问题
三、课堂练习以上习题。
四、课后作业卷子。
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
篇3:勾股定理教学设计
一、教学目标
(一)知识点
1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。
2、会利用勾股定理解释生活中的简单现象。
(二)能力训练要求
1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。
2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。
(三)情感与价值观要求
1、培养学生积极参与、合作交流的意识。
2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。
二、教学重、难点
重点:探索和验证勾股定理。
难点:在方格纸上通过计算面积的方法探索勾股定理。
三、教学方法
交流探索猜想。
在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。
四、教具准备
1、学生每人课前准备若干张方格纸。
2、投影片三张:
第一张:填空(记作1、1、1A);
第二张:问题串(记作1、1、1B);
第三张:做一做(记作1、1、1C)。
篇4:勾股定理教学设计
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想。
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的.实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
情景1:复习提问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现数学的严谨性和规范性。《勾股定理的应用》。
情景2:脑筋急转弯一个三角形的两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教。
你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解。
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题。
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史。
篇5:勾股定理教学设计
一、教学目标
1、让学生通过对的图形创造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。
2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。
3、培养学生数学发现、数学分析和数学推理证明的能力。
二、教学重难点
利用拼图证明勾股定理。
三、学具准备
四个全等的直角三角形、方格纸、固体胶。
四、教学过程
(一)趣味涂鸦,引入情景
教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?
(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。
(2)再分别以这个三角形的三边向三角形外作3个正方形。
学生活动:先独立完成,再在小组内互相交流画法,最后班级展示。
(二)小组探究,大胆猜想
教师:观察自己所涂鸦的图形,回答下列问题:
1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?
2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。
3、与小组成员交流探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?
4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?
学生活动:先独立思考,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。
(三)趣味拼图,验证猜想
教师:请利用四个全等的直角三角形进行拼图。
1、你能拼出哪些图形?能拼出正方形和直角梯形吗?
2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。
学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。
(四)课堂训练巩固提升
教师:请完成下列问题,并上台进行展示。
1、在Rt△ABC中,∠C=900,∠A,∠B,∠C的对边分别为a,b,c。
已知a=6,b=8、求c。
已知c=25,b=15、求a。
已知c=9,a=3、求b(结果保留根号)。
学生活动:先独立完成问题,再组内交流解题心得,最后上台展示,其他小组帮助解决问题。
(五)课堂小结,梳理知识
教师:说说自己这节课有哪些收获?请从数学知识、数学方法、数学运用等方向进行总结。