第1篇:数学备课教案
数学备课教案模板
【篇1:小学数学教学设计模板】
教学设计模板
教材分析: a
()是义务教育标准实验教材小学数学()年级()册第()页至第()页的内容。这部分教学内容在《数学课程标准》中属于“(数与代数/空间与图形/统计与概率)”领),学会了,本课将进一步学习域的知识。经过前面的学习,学生已经认识了((),教材注意创设情景,从学生已有的知识和经验出发,适时的提出(),并引导学生探究和
发现,同时启发学生()。学好这部分知识有助于学生理解,掌握(),也是今后进一步学习知识的基础。b
《 》是小学数学课本第 册(修)的第章“ ”的第 节内容。本节是在学习了之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习打下基
础,所以 是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。
教学目标: a
⒈ 知识与技能目标:让学生联系实际和利用生活经验,通过观察、操作、对比等学习活动,认识(),理解,掌握(),探究和发现(),并能运用所学知识
解决问题。
⒉ 过程与方法目标:在探究过程中,培养学生合作意识,动手实践能力;提高学生的应用意识,培
养学生的自主探究能力。
⒊ 情感态度与价值观目标:使学生在自主参与活动的过程中,进一步体验学习成功带来的快乐,体 验知识的形成过程,实现自主发展。b
(1)使学生结合具体的情境,探索并发现(或理解并掌握),会运用所学的知识解决简单的实
际问题。
(2)使学生主动经历自主探索、合作交流的过程,培养观察、比较、分析、归纳、概括等思维能力。
(3)使学生在探索()的过程中,体会数学与生活的联系,获得成功的体验,增强学好数学的自信
心。
教学重难点:
学情分析:
()年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大
胆地表达自己的见解。因此,在这节课中我设计了多种活动,大胆地放手让学生自主探究、合作交流,充
分发挥学生的主体作用。从而使学生轻松学到知识。
教学理念:
学生的学习过程是一个主动构建、动态形成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历、体验和运用中真正感悟新知。
数学学习过程理应成为学生享受教师服务的过程。
基于以上教学理念,我在教学中遵循“引导探究学习,促进主动发展”的新教改思路。力求体现教学中的主动学习原则、最佳动机原则、阶段性渐进原则和直观性原则。
教学方法:
根据教学内容的特点,为了更好地突出重点、突破难点,按照学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法。在教学中我注意创设情景,设计启发性思考问题,引导学生思考。并适时运用电教媒体化静为动,让学生更直观地学到知识,从而激发学生探究知识的欲望,使学生始终处于主动探究问题的积极状态,培养学生的思维能力。
学生学法: ⒈ 根据自主性和差异性原则,让学生在探究学习的过程中,自主参与知识的发生、发展和形成过程,使学生掌握知识。达到人人学数学的目的。
⒉ 改变学生的学习方式,让学生合作学习,培养学生的合作意识。给学生充足的空间,开展探究性学习,让他们进行独立思考,并与同伴交流,亲身经历提出问题、解决问题的过程,为学生创设一个轻松愉快的学习环境,易于学生积极主动获得新知并体会学习的乐趣。
教学准备:
教师准备:根据教材内容自制的多媒体课件以及()等学具。)等教具。学生以小组为单位准备(教学过程: a
第一环节:创设情景,提出问题。
首先,我播放根据教材内容自制多媒体动画,引出课本主题图。接着引导学生认真观察,提出与有关的数学问题。教师指出本课要重点研究的几个问题是:。
[本环节的设计意图:精彩的开头,不仅能使学生很快由抵制状态进入兴奋状态,还能使学生把知识的学习当成自我需要,使教学任务顺利完成。在这个环节中,我从学生喜闻乐见的动画引入,更接近学生生活,更能让学生接受,从而激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮]
第二环节:尝试探究,解决问题。
本环节我设计了以下几个教学活动。
活动一:
活动二:
活动三: ????
[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我前后组织学生进行了几次自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。] 第三环节:多层训练,深化知识。
本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
[本环节的设计意图是:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。]
第四环节:质疑总结,反思评价。
这一环节,我利用课件展示以下几个问题:
⑴ 今天你学会了什么?⑵ 你有什么收获? ⑶ 你有什么感想?⑷ 你要提醒大家注意什么?⑸ 你还有什么疑惑?⑹ 你感觉自己今天表现如何?你感觉你组内的其他同学表现如何?
让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
[本环节的设计意图是:通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。] b
(一)情境导入(或复习导入)
(评价:从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生的学习兴趣和求知欲)
(二)探索新知
这一程序主要安排()个教学环节:
(评价:让学生充分经历了操作、观察、比较、想象、推理、反思、归纳、概括等数学活动与数学思考,发现了,充分的探究活动,既培养了学生的合理的推理能力,又有效促进了学生思维能力的发展。)
(三)实践应用
(评价:练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,有层次、有针对性地设计上述练习,目的是让学生进一步巩固新知的理解。在掌握基础知识的前提下进行拓展练习,可以深化教学内容,培养思维的灵活性)(四)反馈总结:今天这节课我们学习的什么内容?你有什么收获?
(评价:让学生自己说说本节课的收获,既是对本节课所学知识的回顾与整理,又可以培养学生的概括表达和自我评价的能力。)板书设计
【篇2:初中数学教学设计模板】
学校初中数学教学设计模板 :河北省秦皇岛市卢龙
县木井乡中学
【篇3:数学集体备课教学设计模版(最新版的)】
第2篇:初中数学备课教案
初中数学精选备课教案
要说好课,就必须写好说课稿。认真拟定说课稿,是说课取得成功的前提,是教师提高业务素质的有效途径。无忧考网整理了初中数学说课稿范文,希望对你有帮助!下面就是小编给大家带来的初中数学精选备课教案,希望能帮助到大家!
一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:
(1)组成不等式组的不等式必须是一元一次不等式;
(2)从数量上看,不等式的个数必须是两个或两个以上;
(3)每个不等式在不等式组中的位置并不固定,它们是并列的.二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:
(1)先分别求出不等式组中各个不等式的解集;
(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.三.不等式(组)的解集的数轴表示:
一元一次不等式组知识点
1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;
2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;
3..我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。
说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。
四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。
【一元一次不等式组考点分析】
(1)考查不等式组的概念;
(2)考查一元一次不等式组的解集,以及在数轴上的表示;
(3)考查不等式组的特解问题;
(4)确定字母的取值。
【一元一次不等式组知识点误区】
(1)思维误区,不等式与等式混淆;
(2)不能正确地确定出不等式组解集的公共部分;
(3)在数轴上表示不等式组解集时,混淆界点的表示方法;
(4)考虑不周,漏掉隐含条件;
(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;
(6)对含字母的不等式,没有对字母取值进行分类讨论。
一、背景知识
《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。
二、教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号"""∵""∴"写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温
从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: P19 T1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7
②-6和-
1③-6和-36
④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:P19 T2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"")连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:P19 A组、B组
基础好的A、B两组都做
基础较差的同学选做A组。
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点•难点及解决办法
(一)重点
判定定理的推导和例题的解答.(二)难点
使用符号语言进行推理.(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
第3篇:高中数学备课教案
高中数学备课教案模板
课题
3.2.2导数的四则运算
课型
新授课
1)知识方法目标
导数的四则运算法则,并能灵活运用。数形结合。
教学目标
2)能力目标
运算能力,运用导数解决实际问题能力
教学重点难点
1)重点:熟练运用导数的四则运算法则2)难点:商的导数的运用教法与学法通过具体问题演练,掌握四则运算法则。
教学过程
一、复习引入
1、根据导数的定义求导数的步骤
1、求函数的增量2、求平均变化率
备注
yyx
f(x0f(x0
x
x)x)yx
f(x0);
;1.课题引入
3、取极限得导数(创设情景)
f(x0)
lim
x
0
2、基本初等函数的导数公式
求导也是一种运算,导数的运算法则是怎样的?1、运算法则:
和(差)的导数:
请学生用文字语言描述运算
[f(x)g(x)]
/
f(x)
/
g(x)
f(x)g(x)
/
法则。
积的导数:
f(x)g(x)
推论:cf(x)
f(x)g(x)
cf(x)(c为常数)
运用运算法则求导数。题(1)要求学生分别用定义和运算法则做。
(2)学生利用运算法则求出答案后,利用几何画板作出原
2、例题分析
例1、求下列函数的导数
(1)y2.问题探究
(2)y(3)y
x
23x24)
32x(x
x
3log2x
商的导数:
函数和其导函
f(x)g(x)
(4)y(5)y
f(x)g(x)sinxcosx2x2x
1f(x)g(x)
2数的图像,让
g(x)
(g(x)0)
学生感受导数是如何反映原函数的图像的。
例2、已知曲线y
3x
32x上一点P(3,a),求
学生板书,教师订正。板书订正
a的值和点P处的切线方程?
例3、日常生活中的饮用水通常是经过净化的,随
着水纯净度的提高,所需净化费用不断增加。已知将功1吨水净化到纯净度为元)为
运用运算法则求曲线上某点出切线斜率及切线方程,与运用定义法求解比较。
x%时所需费用(单位:x100)。求净化到下
c(x)
5284100
x
(80
列纯净度时,所需净化费用的瞬时变化率;
(1)90%;(2)98% 分析:要求瞬时变化率实际上就是求函数的导数,这就要用到商的导数公式,然后再代数值,问题就得到解决了。
运用导数解决实际问题。
1、求f(x)3.练习提高
2、课本P85页题5,6,7
xx的导数
其中第2题题目错误4.作业设计
作业本1-10,11选作5.课后反思
第4篇:高中数学备课教案
高中数学备课教案
【篇1:高一数学优秀教案集锦】
高一数学优秀教案集锦 高一数学优秀教案集锦
1.集合与函数概念实习作业
一、教学内容分析
二、学生学习情况分析
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐; 3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【课堂准备】
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
参考题目:(1)函数产生的社会背景;(2)函数概念发展的历史过程;(3)函数符号的故事;(4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数;(5)也可自拟题目
3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务。
/cz/tbjak/qnj/bsdb8njsxxc/ 200605/43459.html等)搜集素材,包括文字、图片、数据以及音像资料等,并记录相关资料,写出实习报告。
实习报告 年月日
6.把各组的实习报告,贴在班级的学习栏内,让学生学习交流。
【教学过程】
1.出示课题:交流、分享实习报告
2.交流、分享:(由数学科代表主持。小组推荐中心发言人;以下记录均为发言概述)
(1)学生1:函数小史
数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用。有些重要的数学概念对数学分支的产生起着奠定性的作用。我们刚学过的函数就是这样的重要概念。在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域。最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨。最初莱布尼茨用“函数”一词表示幂。1755年,瑞士数学家欧拉把给出了不同的函数定义。中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的。我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数学及其相邻学科的发展。
(2)教师带头鼓掌并简单评价
(3)学生2: 函数概念的纵向发展:
该同学从早期函数概念——几何观念下的函数到十八世纪函数概念——代数观念下的函数讲述了函数概念的发展。其中包括18世纪中叶著名的数学家欧拉对函数概念发展的贡献。接着又讲述了十九世纪函数概念——对应关系下的函数。以及现代函数概念——集合论下的函数。函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式。
(4)教师带头鼓掌并简单评价
(5)学生3:我国数学家李国平与函数
学生3描述了数学家中国科学院数学物理学部委员.李国平(1910—1996),的身世和他的成长历程。李国平1933年毕业于中山大学数学天文系。后历任中国科学院数学计算技术研究所所长,中国科学院武汉数学物理研究所所长,中国数学会理事,中国科学院学部委员等职务。学生还通俗地讲述了李国平先生在微分方程复变函数论领域的卓越贡献。
(6)教师带头鼓掌并简单评价
(7)学生4:函数概念对数学发展的影响
该学生从历史上重要数学概念对数学发展的作用是不可估量的事实出发,讲述了函数概念对数学发展的深刻影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. 函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.该学生说道,早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.
从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.
(8)教师带头鼓掌并简单评价
(9)学生5:函数概念的历史演变过程
该学生说,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其它自然科学的区别,也决定了数学的特殊性.如果在两个集合元素之间存在有确定的对应关系,就称为是一个映射.
代 数函 数
函数是这样一个量,它是通过其它一些量的代数运算得到的 近代函数概念
映射函数
设m与n是两个集合,f是个法则,若对于m中每一个元素x,由f总有n中唯一确定元素y与之对应,则f是定义在m上的一个函数.
在认识自然、改造自然的过程中不断遇到:在数量上描述一些现象的几个不同的量是紧密地互相联系的,一个量完全决定于其它量的值,即通过其它量值的一些代数运算 18世纪函数概念 解析函数
函数是指由一个变量与一些常量通过任何方式形成的解析表达式 19世纪函数概念
变量函数
对于给定区间上的每一个x值,y总有唯一确定的值与之对应,则称y是x的函数.
(10)教师带头鼓掌并简单评价 3.课堂小结:
4.实习作业的评定:
【篇2:高中数学教学设计】
高中数学教学设计大赛
获奖作品汇编
(上部)
目录
1、集合与函数概念实习作业?????????????? 2、指数函数的图象及其性质??????????????
3、对数的概念???????????????????
4、对数函数及其性质(1)?????????????? 5、对数函数及其性质(2)?????????????? 6、函数图象及其应用??????????????
7、方程的根与函数的零点?????????????? 8、用二分法求方程的近似解?????????????? 9、用二分法求方程的近似解?????????????? 10、直线与平面平行的判定?????????????? 11、循环结构 ???????????????????
12、任意角的三角函数(1)????????????? 13、任意角的三角函数(2)?????????????? 14、函数y?asin(?x??)的图象??????????
15、向量的加法及其几何意义???????????????
16、平面向量数量积的物理背景及其含义(1)?????? 17、平面向量数量积的物理背景及其含义(2)???????? 18、正弦定理(1)???????????????????? 19、正弦定理(2)???????????????????? 20、正弦定理(3)???????????????????? 21、余弦定理?????????????????? 22、等差数列??????????????????
23、等差数列的前n项和??????????????? 24、等比数列的前n项和??????????????? 25、简单的线性规划问题??????????????? 26、拋物线及其标准方程??????????????? 27、圆锥曲线定义的运用???????????????
前言
为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。
在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。
不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那
是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多
遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!
编者
2008-3-23 于福州
1、集合与函数概念实习作业
一、教学内容分析
二、学生学习情况分析
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学
【篇3:人教版高一必修1数学教案:精品全套】
人教版高中数学必修1精品教案(整套)
课题:集合的含义与表示(1)
课 型:新授课
教学目标:
(1)了解集合、元素的概念,体会集合中元素的三个特征;
(2)理解元素与集合的“属于”和“不属于”关系;
(3)掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本p2-p3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流;
(3)非负奇数;
(4)方程x2?1?0的解;
(5)某校2007级新生;(6)血压很高的人;
(7)著名的数学家;
(8)平面直角坐标系内所有第三象限的点
(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。4.关于集合的元素的特征
(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的元素,或者不是a的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。5.元素与集合的关系;
(1)如果a是集合a的元素,就说a属于(belong to)a,记作:a∈a
(2)如果a不是集合a的元素,就说a不属于(not belong to)a,记作:a?a 例如,我们a表示“1~20以内的所有质数”组成的集合,则有3∈a
4?a,等等。
6.集合与元素的字母表示: 集合通常用大写的拉丁字母a,b,c?表示,集合的元素用
小写的拉丁字母a,b,c,?表示。
7.常用的数集及记法:
非负整数集(或自然数集),记作n;
正整数集,记作n*或n+;
整数集,记作z;
有理数集,记作q;
实数集,记作r;
(二)例题讲解:
例1.用“∈”或“?”符号填空:
(1);(2);
(3)z;(4 ;(5)设a为所有亚洲国家组成的集合,则中国a,美国,印度a,英国 a。
例2.已知集合p的元素为1,m,m2?3m?3, 若3∈p且-1?p,求实数m的值。
(三)课堂练习:
课本p5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1-2题; 2.预习集合的表示方法。
课后
课题:集合的含义与表示(2)
课 型:新授课
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,并用花括号“??”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考 虑元素的顺序。
2.各个元素之间要用逗号隔开; 3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示
清楚后方能用省略号,象自然数集N用列举法表示为?1,2,3,4,5,......?
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
?x?2y?0;(4)方程组?的解组成的集合。?2x?y?0.思考2:(课本p4的思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:?x?ap(x)?
如:{x|x-32},{(x,y)|y=x2+1},{x︳直角三角形},?;
说明:
1.课本p5最后一段话;
2.描述法表示集合应注意集合的代表元素x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x︳整数},即代表整数集z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{r}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合; ?x?y?3;(3)方程组?的解。x?y??1.?
思考3:(课本p6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(二).课堂练习:
1.课本p6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合a={x|4∈z,x∈n},则它的元素是。x?3
4.已知集合a={x|-3x3,x∈z},b={(x,y)|y=x2+1,x∈a},则集合b用
列举法表示是
归纳小结:
本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。
作业布置:
1.习题1.1,第3.4题;
2. 课后预习集合间的基本关系.课后记:
课题:集合间的基本关系
课 型:新授课
教学目标:
(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用venn图表达集合间的关系;
(4)了解空集的含义。
教学重点:子集与空集的概念;能利用venn图表达集合间的关系。
教学难点:弄清楚属于与包含的关系。
教学过程:
一、复习回顾:
1.提问:集合的两种表示方法? 如何用适当的方法表示下列集合?(1)10以内3的倍数;(2)1000以内3的倍数 2.用适当的符号填空: n; q; r。
思考1:类比实数的大小关系,如57,2≤2,试想集合间是否有类似的“大小”关系呢?
二、新课教学
(一).子集、空集等概念的教学:
比较下面几个例子,试发现两个集合之间的关系:
(1)a?{1,2,3},b?{1,2,3,4,5};
(2)c?{汝城一中高一班全体女生},d?{汝城一中高一班全体学生};(3)e?{x|x是两条边相等的三角形},f?{xx是等腰三角形}
由学生通过观察得结论。1. 子集的定义:
对于两个集合a,b,如果集合a的任何一个元素都是集合b的元素,我们说这两个集合有包含关系,称集合a是集合b的子集(subset)。记作: a?b(或b?a)
读作:a包含于(is contained in)b,或b包含(contains)a
当集合a不包含于集合b时,记作a?b
用venn图表示两个集合间的“包含”关系: 如:(1)中a?b2. 集合相等定义:
如果a是集合ba的子集,则集合a与集合b中的元素是一样的,因此集合a与集合b相等,即若a?b且b?a,则a?b。
如(3)中的两集合e?f。3. 真子集定义:
若集合a?b,但存在元素x?b,且x?a,则称集合a是集合b的真子集(proper subset)。记作: a b(或b a)
读作:a真包含于b(或b真包含a)
如:(1)和(2)中a b,c d; 4. 空集定义:
不含有任何元素的集合称为空集(empty set),记作:?。
用适当的符号填空:
??0?; ?; ????; ?0????
思考2:课本p7 的思考题 5. 几个重要的结论:
(1)空集是任何集合的子集;
(2)空集是任何非空集合的真子集;
(3)任何一个集合是它本身的子集;
(4)对于集合a,b,c,如果a?b,且b?c,那么a?c。
说明:
1. 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含
第5篇:初中数学备课教案
初中数学备课教案模板
【篇1:初中数学优质课教案模板】
平行线的性质
教学目标
(一)知识技能
经历探索平行线的性质的过程,初步掌握平行线的性质
(二)过程与方法
通过观察、操作、推理、交流等活动,进一步发展学生的空间观念结合推理能力。
(三)情感、态度、价值观
在学习过程中皮衣学生的唯物主义观点,使学生逐步养成言之有理的习惯。
教学重点
1、平行线性质的探索和对性质的理解 2、应用性质解决实际问题
教学难点
有条理地写出推理的过程。
课前准备 :预习课本
教具准备 :直尺、三角板
教法 :引导、探究、学法 :研讨、探究
教 学 进 程
情景导入
(一)动手操作:
(1)利用一块三角板和一把画两条互相平行的直线a、b;
(2)画直线c使它与直线a、b均相交;
(3)写出一组同位角、一组内错角、一组同旁内角,并用量角器量出它们的度数;
(4)观察各组角度数的关系,你可以得到怎样的结论?
(二)交流、探究
观察发现,得出结论:
两直线平行,同位角相等。
两直线平行、内错角相等。
两直线平行、同旁内角互补。请你根据“两直线平行,同位角相等。”
说明成立的理由。如图
因为a∥b,所以∠1=∠2
又因为∠1与∠3是对顶角
∠1=∠3
所以∠2=∠3
类似地、请根据“两直线平行、同位角相等。”说明
“ 两直线平行、同旁内角互补”成立的理由,并与同学们交流。学生画图板演
小组讨论 合作学习
(三)应用、提高
如图ad∥bc,∠a=∠c,试说明ab∥dc
解:因为ad∥bc
所以∠c=∠cde
又因为∠a=∠c
所以∠a=∠cde
根据“同位角相等两直线平行”
可以知道ab∥dc
练一练:
如图a∥b∠1=55、∠2=68,求∠3、∠4、∠5的度数
(四)总结升华
老师画了一个△abc,他问同学们∠a+∠b+∠c等于多少度? 你能有几种方法得到结论、画图并简述你的理由。
(五)布置作业:p23、(3、4、5)
教学反思
这节课我是这样处理的1.系生活实际,创设问题情境。
2.组织合作交流,营造探究氛围。使学生成为教学活动的主动参与者,真正实现学有所得,学有所用,学有所思,有效地培养学生的探究能力和创新思维。
3.尊学生需要,关注学习过程。,更是放手让学生大胆去作、比较、争论、分析归纳,课堂上百家争鸣、百花齐放,使不同层次的学生都得到了应有的发展。4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。
这节课存在的问题:
1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。
2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范
【篇2:初中数学教案模板】
初中数学教案模板课题: 课题: 授课教师: 授课教师: 学习目 标 重点确定 难点确定 教学工具 教 学 过 程 教学方法 班级: 班级: 课时: 课时:
随堂练习: 随堂练习:体会与交流 1、数学知 识: 2、数学思 想方法: 想方法: 布置作业: 布置作业: 板 设 计 教 学 反 思 书
【篇3:初中数学教案模板】
初中数学教案模板。xx 初中教师专用教案 2009-2010 学年度第一学期 课题: 授课教师: 学 目习标 班级: 课时:重点确定 难点确定 教学工具 教 学 过 程 教学方法
随堂练习: 体会与交流 1、数学知识: 2、数学思想方 法: 布置作业: 板 书 设 计教 学 反思