学校工作总结 教学工作总结 教师工作总结 班主任工作总结 教学心得体会 师德师风建设 教学试卷 教案模板 教学设计 教学计划 教学评语 教学课件 学校管理
首页 > 教学资源 > 教学心得体会

人教版比教学设计与反思

作者:qinbin时间:2020-08-25 下载本文

第1篇:人教版比的应用教学设计与反思

篇1:比的应用教学设计及教学反思

比的应用教学设计及教学反思

教学内容:小学数学人教版第十一册第49页~51页的内容,练习十三的第1~6题。

教学目标:

1、使学生理解按比例分配的意义。

2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

教学重点:掌握按比例分配应用题的解题方法。

教学难点:按比例分配应用题的实际应用。

教学准备:小黑板

教学过程:

一、复习引入:

1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

学生汇报:

(1)男生人数是女生人数的(), 男生人数和女生人数的比是()

(2)女生人数是男生人数的(),女生人数和男生人数的比是()

(3)男生人数占全班人数的(),男生人数和全班人数的比是()

(4)女生人数占全班人数的(),女生人数和全班人数的比是()2.口答

(1)把6 个苹果平均分给两个小朋友,每人分几个?

(2)六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务.六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

(3)六一班参加午餐的有60人,六二班有50人。现在午餐部把110 个平均分给这两个班,你认为合理吗?你认为怎样分合理?

在日常生活中,很多分配问题都不能平均分配,刚才你们说的按人数的比去分,就是我们今天要学习的比的应用,也可以说是按比例分配。板书课题:(比的应用)

指出:按比例分配就是把一个数量按照一定的比来分配。

二、讲授新课

出示例2:某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少? 读题后,问1:4什么意思?浓缩液的体积占这瓶清洁剂的几分之几?水的体积占这瓶清洁剂的几分之几?

你会怎样做这道题?

提问:多找学生说说,要求说出每步算出来的是什么

学生回答后,老师板书:

这道题做得对不对呢?我们怎么检验? 提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

老师总结并强调计算方法 :首先看清题里的条件 给的是哪几个量的比 再看题中给的量是否是这几个量的和,而后在选择合适的计算方法。并养成验算的好习惯。

三、出示练习题(49页 做一做)

(1)某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50。上月新生男女婴儿各有多少人?

(2)学校把栽70棵树的任务,按六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵? 读题后,学生独立做,二人板演

老师集体订正,要求说出每步算出的是什么。

拓展练习

怎样分配最合理?(有的说平均分,有的说按出资多少去分)

2.本期彩票小张出资200元,小王出资300元。小李出资400元,他们三人各应分得奖金多少元?

四、布置作业:练习十二1—4题

五、板书设计:

比的应用

解法

1、每份是 500÷5=100(毫升)

浓缩液有 100×1=100(毫升)

水有 100×4=400(毫升)

解法

2、总份数?1+4=5? 浓缩液有:500×1/5=100(毫升)

水有: 500×4/5=400(毫升)

答:浓缩液有100毫升,水有400毫升

六、教学反思

《比的应用》是十一册教材的内容,与前面学的比的知识,尤其是分数应用题密切相关。如果没有一个良好的基础,这节课想顺利的进行真的很难。因此在教学前面的知识的时候,我踏踏实实走好每一步,不让每一个学生掉队,因此在进行本节课的时候就会水道渠成。

一、情境引入,切入课题:

好的课题导入能引起学生的知识冲突,打破学生的心理平衡,激发学生的学习兴趣、好奇和求知欲,能引人入胜,辉映全堂。新课导入的艺术之一在于能把生活中的问题作为例题,使学生切实体会到学习数

学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出了最好根据人数比来分。根据题目当中所提供的比,让学生估计一下,哪个班级会分的多,说出你估算的根据。这位后面的计算奠定了基础。

二.学生是课堂的主人。

新课程改革的一个核心任务就是要改变学生原有的单纯接受式的学习方式,向自主探究的学习方式转变.充分调动、发挥学生的主体性。从这节课的教学过程来看,学生在教师引导下讨论、交流、真正实现了学习方式的转变。每一个问题的提出,教师都给予学生充分的时间和空间,让学生亲自交流合作,然后再观察比较,最后得出结论。整个过程,对培养学生自主学习的能力是至关重要的。

三、体现了教师是教材创造者的理念。

在如何使用教材这个问题上,我们应该摒弃过去那种“教教科书”的传统思想,充分挖掘新课知识点,整合课堂内容,优化课堂结构,真正实现“用教科书教”。本节课我充分利用例题,将此例题先后做了三次改变,将按比例分配应用题的各种类型全部展示出来。同时在比较中使学生认识到解决按比例分配应用题的关键。打破了学生解题的模式,因此做每一道题目的时候,都必须认认真真地思考,分析。真真正正地培养了学生的能力。

四、多角度分析问题,提高能力

在解答应用题的时候,教师通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中。培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系、让学生死记硬背的做法,让学生充分实践体验,在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备

篇2:2014人教版《比的应用》教学设计

比的应用 长港路小学徐红梅

设计理念:

《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。

教材分析:

这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

学情分析:

对于按比分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

教学内容:六年级数学上册第54页例2 教学目标:

知识与技能

理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。培养学生应用知识解决实际问题的能力。

过程与方法

经历应用知识的过程,体验数学知识的应用价值。

情感态度与价值观

让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,体验数学知识的应用价值。

教学重点:理解按比分的意义,学会运用不同的方法解决按比分配的 问题。

教学难点:正确分析数量关系,灵活解决按比分配的实际问题。教学准备:多媒体课件

教学过程:

教学反思:

在设计教案上确立本节课的教学模式是:复习旧知——情境导入提出问题——合作探究总结算法——实践与应用。

一、研究教材的趣味性、现实性,激发学生学习兴趣。

能激发学生学习数学的兴趣,最需要的是从现实出发,从身边找数学问题,也就是说:“学生的数学学习内容应当是现实的、有意义的、富有挑战的。”利用班上的总人数、男女生人数,来说说比的知识,这种贴近学生生活又有一定挑战性的实际问题,不仅能调动学生学习的积极性,还能培养学生解决实际问题的能力。并且这种学生熟悉的生活素材放入问题中,能使学生真正体会数学不是枯燥无味的,数学就在身边。

二、研究教材的开放性、挑战性。激励学生创新。

教材出现的例题一般都是现成的,学生看看就懂,实际运用又不懂,所以需要补充一些具有开放性、挑战性的学习材料是很有必要的,这样既能留给学生充分的思维空间和选择余地,又能激励学生去发现、去创新,来弥补教材不足。例如:根据“糖和水的比是1∶9”这个信息,你能想到什么?放手让学生说出自己所想到的,为学习探索新知做好充分铺垫。《课标》提出:“数学是人们对实现世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程。”数学学习中的这一形成过程,需要老师的“授之以渔”。为了使学生通过解决具体问题能抽象概括形成普遍方法,指导他们观察分析这类题目的结构,理解按比例分配的意义,并讨论解答按比例 篇3:比的应用教学设计及反思

比的应用教学设计及反思

设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。

教学内容:六年级上册比的应用

教学目标:

1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。

2、能正确解答按比例分配问题。

3、培养解决问题的能力,促进探索精神的养成。

教学重点:掌握解答按比例分配应用题的步骤。

教学难点:掌握解题的关键。

教学过程:

一、创设情境,感受价值

1、师:同学们,大家平时放过东西吗?

2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)

注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?

3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。

注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。

二、探究教学

1、探究例题

呈现例题,根据学生的建议,共同完成例1 师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵?

(2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息? 师:请同学们独立思考,独立完成(教师巡视、指导)

(3)展示结果

根据学生的回答板书解题方法

第一种:60÷(2+3)=12(棵)12×3=36(棵)12×2=24(棵)第二种:2+3=560×3/5=36(棵)60×2/5=24(棵)

注: 学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。

2、揭示课题

师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。

3、思考:如何检验答案是否正确呢?

讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?

指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。

三、巩固练习

教材做一做。

四、总结

通过这节课的学习,你有什么收获? 教学反思:

1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。

2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时

反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。

第2篇:人教版数学比一比教学设计

人教版数学《比一比》教学设计

◆您现在正在阅读的人教版数学《比一比》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《比一比》教学设计第一课时 比多少教学内容:p6-p8、练习一 1-4题教学目的:

1、使学生知道同样多、多些、少些的含义,初步学会用一一对应的方法比较物体的多少。

2、初步培养学生的动手操作能力,渗透对应思想。

3、引导学生认真观察,培养学生积极思考、大胆探索的良好品质。

教具、学具准备:圆形、三角形、正方形若干;学生准备5个圆形、5个三角形、5个正方形。教学过程:

一、复习:从1数到10。

导入: 昨天我们学习了数一数,今天我们就来学习比一比。(板书:比一比)二、新课

(一)同样多1、看图说话:教师贴出4个圆纸片,学生数一数有几个,再贴出4个三角形纸片,学生数一数有几个。看着这图,你

第 1 页 能说一句话吗?那你是怎么知道它们同样多的呢?一个圆纸片对着一个三角形纸片,所以我们就说,圆纸片和三角形纸片同样多。

2、比一比:请伸出你的双手,我们用一个指头对着一个指头的方法来比较一下两只手上的手指头是否同样多(师生一起做,然后同桌互相做)。

3、动动手:教师在黑板上贴3个○(学生跟着在台下摆),要求对着○摆□,□要和○同样多。指名一人在黑板上摆,其余同学在下面摆,摆完后说说摆的方法。

4、同桌左边的同学摆任意个□,右边的同学摆△,使得□和△同样多。说说摆的方法。

5、找一找:在p6、p7的图中找出同样多的东西。

(二)多些、少些:

1、教师贴出4个三角形,学生说是几个,再贴出3个正方形,学生说有几个。问:三角形和正方形同样多吗?你怎么看出来的?(教师伺机连线)教师引导学生:三角形有剩余,正方形没有剩余,我们就说正方形少些,三角形多些,也就是说三角形比正方形多。(板书:多些、少些)

2、教师在黑板上贴2个○和3个△。提问:怎样比较○和△谁多谁少?(同桌同学商量。)指名说。

3、找一找:在p6、p7的图中找出什么东西比什么东西多或

第 2 页 少的。

4、学生动手操作: ①第一行摆3个○,在○下面摆△,△要比○多1个。②第一行摆4个□,在□下面摆△,△要比□少2个。③要使下图中第一排比第二排多2个圆,应该怎么办?三、练习

1、p11、12 练习一 1-4题。

2、找一找我们教室里有什么东西是同样多的,什么东西是多些,什么东西是少些的?

四、小结:今天我们学会比较多少,明天我们要学习比较长短,请同学们每人准备一把尺子,一支用过的铅笔。

教学反思:

这节课我自认为最大的亮点是选用的材料很简单,都是运用身边的资源。

《比多少》这一课是在学生原有比多少方法的基础上,会用一一对应的方法比较物体的多少。本节课,我根据刚入学儿童的认知特点,运用有趣的动手操作,吸引学生的注意力,提供多种形象的事物,给学生充分的学习资源。

课的主要环节引导学生有组织有目的的操作,尝试各种比较的摆法,在师生、生生合作的过程中,学生通过亲身操作、观察,充分体验和感悟同样多、多、少的含义。在学生原有

第 3 页 比多少方法的基础,通过图片的帮助和教师的引导,学会用一一对应的方法来比较多少。在教学中,我放手让学生去观察、操作、尝试。让学生积极开动脑筋,做他们想做的,在做中逐渐理解知识。体会到学习数学的乐趣。

操作是本课的一个很重要的环节,但是在操作中有不少学生玩起学具来,就停不下来,有的甚至忘记了老师提出的操作要求,随心所欲地玩起别的花样来。怎样让学生在操作中做到有目的地玩,在玩中学,并有始有终地完成老师交待的任务,我还需要进一步思考,找出相应的对策。

本节课还要注意有些学生会根据以往经验:数量一样多的图片,头和尾一般对齐,容易错判断为同样多!

第 4 页

第3篇:人教版数学《比的应用》教学设计及反思

人教版数学《比的应用》教学设计及反思

◆您现在正在阅读的人教版数学《比的应用》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《比的应用》教学设计及反思教学内容:

人教版六年级数学上册第54页例2和练习十二第1~4题。

教学目标:

1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。

2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。

3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

教学重点:

运用按比分配的知识解决生活中的实际问题。

教学难点:

提高分析问题与解决问题的能力。

教学过程:

一、情景导入。

如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。

板书:比的应用。

二、探索新知。

请同学们打开教科书的54页。

出示教材54页例2

阅读与理解:

(1)、了解情境中的生活信息。

(2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。

分析与解答:

(1)、稀释液:500ml 总分数:1+ 4=5

1 : 4表示什么意思呢?

浓缩液 : 水

(2)、浓缩液和水的体积比是1: 4。

浓缩液的体积是稀释液的1/5。

水的体积是稀释液的4/5。

方法一:

总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。

把每份是:500(1+4)=100(mL)

浓缩液:1001=100(mL)

水:1004=400(mL)

方法二:

◆您现在正在阅读的人教版数学《比的应用》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《比的应用》教学设计及反思

先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。

浓缩液有:5001/5=100(mL)

水有:5004/5=400(mL)

回顾与反思:

浓缩液体积:水的体积

=():()

=():()

答:浓缩液有100mL,水的体积有400mL。

三、巩固练习

练习十二第1、2题。

四、小结:

1、今天我们应用比解决了一些实际问题。你有什么收获?

2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。

五、作业:

练习十二第3、4题。

六、板书设计:

比的应用

方法一 方法二

总分数1+4=5

每份数: 500(1+4)=100(mL)浓缩液占总体积的1/5

水占总体积的4/5

浓缩液:1100=100(mL)浓缩液有:5001/5=100(mL)水:4100=400(mL)水有:1004/5=400(mL)

答:浓缩液有100mL,水的体积有400mL。

课后反思:

按比的配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。

第4篇:人教版按比分配教学设计

篇1:《按比分配》教学设计

《按比分配》教学设计

教学目标:

1.进一步理解比的意义,掌握按比分配问题的特点及解题方法,能正确的解决按比分配的问题。

2.经历自主画图分析、将新知识与旧知识建立联系解决问题的过程,提高分析问题和解决问题的能力。

3.通过实例使学生感受到数学与生活的密切联系,感受数学的学习价值。

教学过程:

一、引入。

师:老师买了一瓶浓缩果汁,调制了三杯果汁水,我品尝了一下,你们想知道味道怎么样?(1号特别甜,3号特别淡,2号口感还不错)

师:都是用这瓶浓缩果汁调制的,味道怎么不一样?

师:这三杯果汁水都是我按照浓缩果汁和水一定的比配制的,浓缩果汁和水的比分别是1:

9、1:4和1:1,根据品尝的结果,把果汁水和相应的比连一连。 1号(特别甜)浓缩果汁和水的比是1:9 2号(还不错)浓缩果汁和水的比是1:4 3号(很淡)浓缩果汁和水的比是1:1 师:每袋浓缩果汁的包装袋上都有调制建议,标明了浓缩果汁

和水的体积比,看来正如说明书上所说,按1:4的比配置的果汁水口感最佳。

师:我们在解决问题时,要经历哪几个步骤?

生:阅读与理解、分析与解答、回顾与反思。(板书)1.自己分析,独立解答。

师:通过阅读这道题目,我们知道了哪些信息?互相说说 生:500毫升是稀释后果汁水的体积

(板书: 500毫升 果汁水)

按1:4的比配置的。

(板书: 浓缩果汁:水)1: 4 要求的是浓缩果汁和水的体积。

师:你是怎么理解1:4的?用你喜欢的方式写一写、画一画。然后解答这道题。

(要求:先独立完成、再在小组内交流)2.汇报。

(1)怎样理解1:4。

预设:①浓缩液是这样的1份,水是这样的4份,冲好的果汁一共是这样的5份。

(板书: 果汁 1份

水4份

果汁水 5份)

1份 4份

1份 4份

④把冲好的果汁看作单位“1”,浓缩液占总量的,水占总量的。

师:第4种方法与前三种有什么相同点?有什么不同?(不仅看出了1份4份,还看出了每部份和总量之间的关系)(板书:浓缩果汁占果汁水的水占果汁水的)

师:有的同学利用文字,有的同学通过画图,都是在表达你们对于1:4的理解,概括的说你们都分析出什么了?

生:分析出浓缩液和水的关系,分析出每部分和总量的关系。师:那我们对1:4的理解对解题有帮助吗?好,下面我们一起交流解答的方法。

(2)汇报解题过程。45151545 ①归一思路:浓缩液是这样的1份,水是这样的4份,总体积平均分成5份。500÷(4+1)=100(毫升)

浓缩果汁:100×1=100(毫升)

水: 100×4=400(毫升)

②利用分数乘法解答: 1=100(毫升)1+4 4水: 500×=400(毫升)1+4浓缩果汁: 500×

师:怎么想到用分数解决的?

师:要转化成用分数解答,关键是什么? 3.回顾与反思。

师:我们已经分析解答了这道题,接下来我们该。生:回顾与反思。

(1)检验结果是否正确。

看浓缩液和水的体积比是否是1:4。

和是否是500毫升。

师:为什么要从两方面检验。

(2)回顾解题过程。

做了哪些事?首先着重理解了1:4的意义

解答。解答时同学们用到了不同的方法,有的用到了小份的方法,有的用到了分数乘法。

师:正像你们所说的,首先我们对1:4进行了理解。不同的 理解,解题的方法不同;分析的越全面、深入,方法越多样。4情境延伸。

师:特甜的这杯水我也配置了500毫升,你知道我放了多少浓缩果汁?多少水吗?

特别淡的这杯水呢?

师:刚才我们解答的这类题都是把一个数量按照一定的比进行分配,然后求出每部分各是多少,我们把这样的问题也叫做按比分配的问题。你们会解答了吗? 1.2.按比分配的想象在生活中在生活中有着广泛的应用,你在哪里见过吗?(生举例)我们来看看下面的事情是怎么分配的?

(1)

篇2:人教版六年级数学上册 比的应用(按比分配)教学设计

《比的应用—按比分配》教学设计

授课教师:肖彦 授课时间:2011.10.24 课题:比的应用——按比分配

教学内容:六年级数学上册第49页例2和“做一做”及练习十二第1-4题。教学目标:

1、知识目标:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。

2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。

3、情感目标: 让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

教学重点和教学难点:

理解按比分的意义,学会运用不同的方法解决按比分配的问题。教学过程:

一、复习引入:

(一)抢答:

1.将10克糖放入90克水中,糖和水的比是多少?糖占水的几分之几?水是糖的几倍?糖是糖水的几分之几?水是糖水的几分之几?

2.小刚家养的鸡、鸭、鹅的只数比是7∶2∶1,那么鸡的只数占三种家禽()()总数的 ,鸭的只数占三种家禽总数的,鹅的只数占三种家禽总

()()()数的。

()

3.根据“四二班男生人数和女生人数的比是1∶2”这个信息,你能想到什么?

(二)口头列式计算: 3 1.果园有100棵苹果树,梨树的棵数是苹果树的,梨树有多少棵? 52.学校操场共有400平方米,由一年级和六年级的同学打扫,平均每个年级打扫多少平方米?

导入:这是一道什么应用题?(平均分)你认为这样分配任务合适吗,为什么?你认为应该怎样分配任务?

二、新课教学。

(一)改编复习题,分析题意。

根据学生的回答,给上题补充一个条件,改编成一道按比分的应用题:学校操场共有400平方米,按1∶4的比分配给一年级和六年级的同学打扫,两个年级各打扫多少平方米?

“按1∶4的比分配给一年级和六年级的同学打扫”这句话是什么意思?根据这句话我们可以想到什么?

多请几个学生说一说。

(二)学生试做。

再请学生自己试着做一做。鼓励学生用不同的方法,如果觉得有困难,可以自己看一看书上49页的例2。

(三)集体订正评讲。

教师根据学生的回答画示意图,板书算式,并让学生说一说每一步算的是什么。

(四)再次改编复习题。

学校操场共有400m2,按1∶3∶4的比分配给一年级、二年级和六年级的同学打扫,这三个年级各打扫多少m2?

教师引导,师生一起完成。

(五)比较两道例题,小结。

这两题有什么共同的地方?(第1题中400 m2是一年级和六年级的同学要打扫的面积总和,是按1∶4这个比来分的。要求一年级打扫多少和六年级打扫多少。第1题中400 m2是一年级、二年级和六年级的同学要打扫的面积总和,是按1∶3∶4这个比来分的。要求一年级打扫多少、二年级打扫多少和六年级打扫多少。两题都已知要几个年级要打扫的面积总和,和几年级打扫的面积之比,要求几个年级分别打扫的面积。)这种应用题,已知了几个数量的总和以及这几个数量的比,要求这几个数量,也就是要把一个数按一定的比分成几部分。所以这种应用题叫做按比分配应用题。解答按比分配的应用题哪些方法呢?(解答按比分配的应用题时可以把比转化为份数,先求出总份数,再求出每份数,再用每份数×对应的份数=对应的数量。也可以把比转化为分数,先求出对应量占总量的几分之几,再用总量×对应()的 =对应的数量。)()

(六)结合教材第49页例2再次巩固按比分配应用题的特征及解答方法。

三、巩固练习。 教材第49页“做一做”,让学生用自己喜欢的方法独立解答,鼓励学生用不同的方法。

四、全课总结。

今天我们应用比解决了一些实际问题。你有什么收获?(什么叫按比分配?按比分配的应用题有什么特征?解答按比分配的应用题有哪些方法?平均分是按比分配吗?生活中有哪些按比分配的实例?)

五、作业:练习十二第1-4题。

五、板书设计:

比的应用——按比分配

篇3:人教版六年级数学上册_比的应用(按比分配)教学设计

课题:比的应用——按比分配

教学内容:六年级数学上册第54页例2和练习十二第1-4题。

教学目标:

1、知识目标:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。

2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。

3、情感目标: 让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

教学重点和教学难点:

理解按比分的意义,学会运用不同的方法解决按比分配的问题。

教学过程:

一、复习引入:

(一)抢答:

1.将10克糖放入90克水中,糖和水的比是多少?糖占水的几分之几?水是糖的几倍?糖是糖水的几分之几?水是糖水的几分之几?

2.小刚家养的鸡、鸭、鹅的只数比是7∶2∶1,那么鸡的只数占三种家禽()()总数的 ,鸭的只数占三种家禽总数的,鹅的只数占三种家禽总()()

()数的。()

3.根据“四二班男生人数和女生人数的比是1∶2”这个信息,你能想到什么?

(二)口头列式计算:

31.果园有100棵苹果树,梨树的棵数是苹果树的 ,梨树有多少棵? 5 2.学校操场共有400平方米,由一年级和六年级的同学打扫,平均每个年级打扫多少平方米?

导入:这是一道什么应用题?(平均分)你认为这样分配任务合适吗,为什么?你认为应该怎样分配任务?

二、新课教学。

(一)改编复习题,分析题意。

根据学生的回答,给上题补充一个条件,改编成一道按比分的应用题:学校操场共有400平方米,按1∶4的比分配给一年级和六年级的同学打扫,两个年级各打扫多少平方米?

“按1∶4的比分配给一年级和六年级的同学打扫”这句话是什么意思?根据这句话我们可以想到什么? 多请几个学生说一说。

(二)学生试做。

再请学生自己试着做一做。鼓励学生用不同的方法,如果觉得有困难,可以自己看一看书上49页的例2。

(三)集体订正评讲。

教师根据学生的回答画示意图,板书算式,并让学生说一说每一步算的是什么。

(四)再次改编复习题。

学校操场共有400m2,按1∶3∶4的比分配给一年级、二年级和六年级的同学打扫,这三个年级各打扫多少m2?

教师引导,师生一起完成。

(五)比较两道例题,小结。

这两题有什么共同的地方?(第1题中400 m2是一年级和六年级的同学要打扫的面积总和,是按1∶4这个比来分的。要求一年级打扫多少和六年级打扫多少。第1题中400 m2是一年级、二年级和六年级的同学要打扫的面积总和,是按1∶3∶4这个比来分的。要求一年级打扫多少、二年级打扫多少和六年级打扫多少。两题都已知要几个年级要打扫的面积总和,和几年级打扫的面积之比,要求几个年级分别打扫的面积。)

这种应用题,已知了几个数量的总和以及这几个数量的比,要求这几个数量,也就是要把一个数按一定的比分成几部分。所以这种应用题叫做按比分配应用题。

解答按比分配的应用题哪些方法呢?(解答按比分配的应用题时可以把比转化为份数,先求出总份数,再求出每份数,再用每份数×对应的份数=对应的数量。也可以把比转化为分数,先求出对应量占总量的几分之几,再用总量×对应()的 =对应的数量。)()

(六)结合教材第54页例2再次巩固按比分配应用题的特征及解答方法。

三、巩固练习。

四、全课总结。

今天我们应用比解决了一些实际问题。你有什么收获?(什么叫按比分配?

按比分配的应用题有什么特征?解答按比分配的应用题有哪些方法?平均分是按比分配吗?生活中有哪些按比分配的实例?)

五、作业:练习十二第1-4题。

第5篇:人教版比的意义教学设计

篇1:比的意义教学设计

教学设计

《比的意义》教学设计

课标与教材分析:

本课是青岛版教材40—41页《比的意义》。是“比和比例”单元的起始课。教材在安排此内容时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。《数学课程准标》指出:“数学教学必须从学生熟悉的生活情景和感兴趣的事物出发”。教材是从日常生活中的相除关系的例子中引出的,通过对具体例子的讨论,明确了比的概念。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关联的两个数量的比都可以抽象为两个数的比,比分为同类量的比和不同类量的比。

教材在介绍比的各部分名称时提出了比值的意义,比值的意义和比与分数、除法的关系是本节课的教学要点,理解它们之间的关系,对今后学习比的其它知识和比例的知识具有重要意义。

比的意义是由除法发展而来的,与除法,分数既有联系又有区别。所以制定了以下教学目标:

知识目标:

1、理解比的意义,学会比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,会正确求比值。

3、弄清比同除法、分数的关系,同时领悟事物之间相互联系的观点。技能目标:

1、能正确的求出比值。

2、通过小组合作学习,激发合作意识,培养学生分析、概括和自主学习的能力。并能运用新知识解决生活中的实际问题。

情感态度目标:

1、通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辩证唯物主义观点。

2、养成课前预习、课后复习、独立思考和大胆质疑的良好习惯。

教学重难点:理解比的意义及比与除法、分数的联系。

主要学习方法及教学策略分析: 本节课用创设情境法,从学生身边熟悉身体结构提取教学素材,激发学生对新课的学习兴趣。用身体中的头部长和身长两个数量比较成为教学的起点,逐步引出比的意义。比的各部分名称的教学,采用让学生自主学习的方法;比与除法、分数的联系,采用学生小组合作探究学习的方法。

设计理念:

新课程倡导教师在课堂教学中起主导作用,学生才是学习的主体,教师要最大限度地引导学生参与教学的全过程。自学是学生参与学习的一种有效方法,《比的意义》一课概念不仅多而且也琐碎,为了使学生更好的掌握本课内容,突破重难点,我主要采用学生自主学习和合作交流的方式进行,教师做好引导者和参与者的角色,让学生在自学中体会、练习中感悟、讨论中明理,在学习过程中,学生的合作意识、分析概括能力和自主学习的能力得到了培养和提高。

教学过程:

一、复习铺垫。(多媒体出示)

1、填空。 速度=()÷()单价=()÷()工作效率=()÷()

2、除法与分数的关系

二、情境导入。(出示第一张幻灯片)

1、创设情境 初步感知

师:课前老师让大家测量了自己的身体各部分的长度,谁来说一说? 师:老师也查阅了赵凡的一些资料,我们来了解一下,好吗?

多媒体出示课件(课本主题图片)

同学们,你从图中知道了哪些信息?

根据这些信息你能用算式表示赵凡同学的头部与身长的关系吗?

生:20÷160、表示头部长是身长的几分之几?

生:160-20表示身长比头部长多少厘米?

生:160÷20 表示身长是头部长的多少倍?

师:除了用算式表示头部长和身长的倍数关系和相差关系,还有一种方式也可以表示出头部长与身长的关系,今天我们就来认识这种表示数量之间关系的新方法——比(板书:认识比)

2、借助教材,感知概念

师:求赵凡头部长是身长的几分之几用25÷160 还可以说赵凡头部长与身长的比是25:60 身长时头部长的几倍还可以说身长与头部长之比师160:25 师:同学们25:160和160:25这两个比一样吗?

生:不一样,25:160是头部长与身体的比 160:25 是身长与头部长的比

师:两个数量进行比较一定要弄清谁和谁比,谁在前,谁在后。不能颠倒位置,否则,比表示的意义就变了

师:你能不能试用比说说赵凡身体其他两者之间的关系?

指名发言

师:刚才我们所说的比都是两个长度的比,相比的两个量都是同类的量,你还能举出生活中这样的例子吗?

练习这样的例子

3、探究不同类量的比

多媒体出示:赵凡3分钟走了330米,赵凡的行走速度是多少?

问:速度可以怎样求?330÷3= 师:这时候我们可以用比来表示路程与时间的关系,可以说路程和时间的比是330:3 师:除了相同的量可以可以用比,不同类的量只要有相除关系就可以用比表示

所以我们把两个数相除也叫做两个数的比。

练习:用比表示练习

4、自主学习交流成果

同学们打开可本自学比的其他知识,交流学习成果。

小练习

5、探究比、除法、分数的关系

1、讨论交流他们之间的关系

2、0可以是比的后项吗?

3、比赛中的0 和比有关系吗?

①比的前项、后项和比值分别相当于分数和除法算式中的什么?

三、思维拓展,感知数学无处不在。

1、生活中的比,人体中有趣的比。

人的身高与双臂平伸长度的比大约是1:1;将拳头翻滚一周,它的长度与脚的长度的比大约是1:1;人的脚长与身高的比大约是1:7;身高与胸围长度的比大约是2:1;人的体重与血液重量之比大约为13∶1。

先自读,后同桌互读,理解内在含义。

五、课堂总结。

请同学们闭上眼睛,想想着节课有什么收获?把你的收获说给你的同桌听,如果还有什么疑问,告诉老师,我们一起来解决。

板书设计: 比的意义

同类量的比:不同类量的比:

头部与身长的比25 :160 路程与时间的比 330:3 两个数相除就叫做两个数的比 100 : 2 =100 ÷ 2=50 前项 比号 后项 前项 除以 后项 比值 篇2:人教版小学数学《比的意义》教学设计

《比的意义》教学设计

南京市江宁区湖熟中心小学 陶俊

教材依据:苏教版小学数学第十一册p52-53比的意义

设计思想:从生活中常见的例子导入新课,能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。从学生身边的数量中提取数学问题,从而引出新知识,运用旧知识进行迁移。在出示例题后,组织学生围绕“比”的问题去研究、探索、讨论、概括、总结,实现了自主学习,这样,尊重学生的主体地位,培养创新精神。让学生通过观察、分析归纳出比的意义,使学生不仅获取了新知识,也培养了学生自学能力和分析归纳能力。最后介绍黄金分割的知识,让学生有更强烈的学习欲望。

教学目标:

1、理解并掌握比的意义,会正确读写比。

2、记住比各部分的名称,并会正确求比值。

3、理解并灵活掌握比与分数、除法之间的联系与区别。

4、向学生渗透转化思想,培养学生的比较、分析和抽象概括能力。 教学重点:理解比的意义

教学难点:把两种量组成比,以及在此基础上进行求比值。

课学准备:制作教学课件。

教学过程:

一、以旧引新

1、老师请问同学们我们班有多少男生?又有多少女生呢?

(学生回答老师板书:男生:25人,女生:18人)

问:根据这两个条件你能提出什么问题?应该怎么算? * 学生:男生是女生的几倍?女生是男生的几分之几??? 老师板书:

刚才我们复习了比较两个数量之间的关系,可以列成除法算式进行计算,但是要注意谁和谁比。比较的顺序要按要求进行,不能颠倒。

2、多媒体展示我国奥运健儿在第28届雅典奥运会颁奖台上的风采和一面鲜艳的五星红旗。问:你有什么想说的?

出示一面国旗长3分米,宽2分米

问:根据这两个条件你能提出什么问题?应该怎么算? * 学生:男生是女生的几倍?女生是男生的几分之几??? 老师板书:

3、揭示课题

其实要比较长与宽的关系,除了用除法计算外还有一种新的比较方法,这就是比。

二、教学新课

(一)理解比的意义

1、引导学生说出第一个学习目标

教师指着课题提问:同学们要学习“比”,你想要学习什么呢?

(* 学生:什么是比?比是什么?什么叫比?谁和谁比?)

师:看来同学们都迫切的想知道比的意义是什么?(板书)比的意义

2、比的意义的初步感知

(1)师:刚才我们列式可以求出长是宽的几倍,宽是长的几分之几。

(指着黑板)追问:3÷2求的是什么?是国旗的什么和什么比较?长是多少?宽是多少?长和宽比也就是几和几比?

师:3÷2我们又可以说成长和宽的比是3比2。

谁愿意再来说一遍

*(让两至三学生学着说)

(同样方法教学2÷3)

师小结:我们用除法可以来表示两个量之间的关系,我们也可以用“比”来表示。也就是说一个量是另一个量的几倍或几分之几也可以说成两个量的比。

(2)教学例题

1、出示一张运动会小明跑步的照片:“体育节上小明跑100米用15.7秒” 提问:这里已知哪两个数量?可以求出哪个数量?怎样求? * 学生回答并列式

(师板书:100÷15.7)

2、说明:100÷15.7用除法求出了这辆车的速度,它表示路程和时间之间的关系。我们还可以用比来表示路程和时间之间的关系,把它说成路程和时间的比是100比15.7。(板书)

(先点名)追问:100÷15.7表示什么?还可以怎么说? * 学生回答 并列式计算

老师板书:

3、问:能把刚才复习题中的问题改用“比”的说法吗? *学生练习说:男生和女生的比是25比18 女生和男生的比是18比25??

4、出示两题

1、一辆汽车5小时行驶250千米,平均每小时行多少千米?

2、张阿姨用24元钱买了8千克苹果,平均每千克苹果多少元? 学生回答 并列式计算并改写成比的说法。

5、概括比的意义

启发学生观察板书,相互讨论。*学生活动组织:

①仔细阅读黑板板书。

②同桌互相讨论。③指名学生汇报讨论结果(教师板书比的意义:两个数相除又叫做两个数的比。)

屏幕显示:“︰”是比号,读作“比”

两个数的比也可以写成分数形式

(二)比的读、写,求比值,理解比与除法、分数的关系

1、指导自习课本第52页下三行和53页上九行 *学生自学

2、自学提纲:*检查学生自学情况 ①“比”如何读、写?比有几种书写形式? ②比的各部分名称是什么?

③怎么求比值?

④比与除法、分数之间有什么联系?

⑤比的后项能不能为0?为什么?

3、根据比、分数的关系,3∶2也可以写成分数形式为,但不是分数。仍读作3比2。23 *学生练习把25∶

18、24∶8 写成分数形式并让学生读一读。

②比的后项能为“0”吗?为什么?

5、这三者有何区别呢?(可让学生观察关系表,如果学生回答不出来可以教师加以说明)

6、填空:(1)3÷7=()()=()∶();a∶b=()()=()÷()(2)体育节上,老师买来15瓶橙汁用去30元,橙汁的总价和数量的比是():(),比值是(),比值表示()

三、巩固练习

1、(1)写一个比值为 的比

(2)如果甲数是乙数的3倍,可以说成()与()的比是()。或说成()与()的比是()。

2、讨论题:小强的身高1米,他爸爸的身高是173厘米,*

1、学生练习。 21 小强说他和他爸爸的身高比是1 ︰ 173,对不对?如果

2、集体评讲。 不对,你认为是多少呢?

3、判断:

(1)六年级小刚的跳远成绩是2米,三年级的小明的跳远成绩是110厘米,他们的成绩比是2:110()(2)1500米长跑,王成用6分,张静用8分钟,他俩的速度比是6:8。()

(3)大卡车的载重量是5吨,小卡车的载重量是2吨,大小卡车载重量的比是。()

(4)如果a是b的3倍,那么a与b的比是1﹕3。()

(5)小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1 ﹕ 173。()

4、比一比,哪一杯更甜?

第一杯糖和水的比是1:20;

第二杯糖和水的比是1:25;

第三杯糖4克,水100克。

5、拓展应用(1)

1978年前我国农民年人均纯收入是100元,经过二十多年的改革开放,现在我国农民年人均纯收入为2100元。现在农民年人均纯收入与1978年前的比是(),比值是()。这个比值说明了什么? 量之间的比。

6、(1)点击新闻:

在最新一轮世界杯预选赛中,阿根廷2:0战胜秘鲁。

讨论:既然比的后项不能是0,而足球赛中常出现的“2:0”的意义是什么?它是一个比吗?

7、看谁会动脑筋

(2)你能根据题目中提供的信息,寻找合适的量,自己提出多种多样的问题,并说说这些量之间的比。25动脑筋,根据表中提供的信息,寻找合适的量,自己提出各种问题,并说说这些

小明今年12岁,是六(1)班学生,该班共有42个学生;小明爸爸今年38岁,在保险公司上班,年薪15000元;小明妈妈每月工资800元,她所在单位有职工24人。

7、课后阅读

四、师生总结

1、对照板书,进行课堂总结。

2、介绍“黄金分割”的知识。(师课件出示一些图案和画面加以说明)

古希腊著名哲学家、数学家毕达哥拉斯在2500年前发现 1/0.618=1.618(1-0.618)/0.618=0.618 我们人体上有很多黄金分割点,比如肚脐是我们整个人的黄金分割点;肘关节是我们中指指尖到肩的黄金分割点;手腕是中指指尖到肘关节的黄金分割点;脚裸是脚尖到膝盖的黄金分割点等等。

运用黄金分割这个比可以创造出很多更加美好的事物,除此以外,生活中还有一些很有趣的比,同学们以后可以慢慢的感受和发现??

五、板书设计

比的意义两个数相除又叫做两个数的比。男生:25人25÷18=

女生:18人18÷25= 3÷2= 长与宽的比是20比15 记作 20∶15 2÷3= 宽与长的比是15比20 记作 15∶20 100÷15.7=路程与时间的比是90比2 记作100∶15.7 3 : 2=3÷2=3 2前 比 后比

项 号 项 值

教学反思:

再次回顾整个教学过程,对照新课程理念,我觉得这节课的教学实现了三方面的变革:

一、师生关系的变革

教学活动中,教师从传统意义上的教师教与学生学向师生互教互学转变,彼此形成一个真正的学习共同体,老师的作用特别体现在以下几个方面:

1、设计空间较大的问题,给学生发现的时间和空间。 篇3:人教版六年级上册比的意义教案

比的意义

备课时间:2012.10.14 授课时间:2012.10.16 授课教师:李菊英 授课班级:六

(二)

教学目标

知识与技能:通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意

义,掌握比各部分名称,理解比和分数、除法之间的关系。

过程与方法:掌握求比值的方法,并能正确求出比的比值。

情感与态度:培养学生抽象、概括能力。

教学重点:理解比的意义,掌握求比值的方法。

教学难点: 理解比的意义,建立比的概念。

教具准备:纸片、表格。

教学过程

一、谈话引入

同学们,你们知道国旗吗?那你了解制作国旗的标准吗?(也就是说国旗的长度和宽度要怎么搭配才是标准的)那么你们想知道吗?今天我们就一起来了解一下。

二、讲授新课,引出比的意义。

(一)比的意义

1、出示例题:(卡片)一面红旗,长15厘米,宽10厘米。

(1)同学们能列出算式表示这两个数量之间倍数关系吗?

长是宽的几倍?15÷10=1.5 2宽是长的几分之几? 10÷15=3(2)再举例

请一组的同学起立,快速数出男女生数,并列出他们之间的倍数关系。

老师板书:

(3)请同学们看你们手上的题,考虑怎么列算式。(生读题)

师板书:速度 100÷2 单价 200÷2 师小结:这些题都用除法算式来表示两种数量之间的关系,在日常生活、生产和科学实验中,我们通常要对两种数量进行比较,今天我们要学习一种新的比较两种数量关系的方法,叫做比。

板书:比的意义

师:在刚才的例子中长是宽的几倍可以说成是长和宽的比是15比10,宽是长的几分之几可以说成是宽和长的比是10比15。

学生独立说出其它的题。

数量关系式还有:工作效率=工作总量÷工作时间

归纳总结:像刚才的(1)和(2)中的数量比是属于“同类量”比,(3)这样的数量比属于不同类量比。

通过上面的例子,可以看出:比较两个数量之间的倍数,可以用两个数相除的方法,有时也可以说成这两个数的比是几比几。

(板书)两个数相除又叫做两个数的比。

(二)比的各部分名称和求比值的方法。

1、两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了。

师:请同学们快速自学44页的内容。然后说说你学到了什么?(生汇报)

例如: 15比10 记作:15∶10 10比15 记作:10∶15 315 ∶ 10 = 15 ÷2 前 比 后 比

项 号 项 值

“∶”叫做比号,读作比(比号在两个数中间),比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

师:我们刚才已经知道了红旗的长宽比,那么现在同学们能做更大的红旗了吗?(师引导交流)

2、练习:老师出示卡片,学生很快算出比值。

(三)、比、除法、分数之间的关系(图示“比、除法、分数的异同”)

提问:从上面可以看出,比和除法有密切的联系,以前我们学过除法和分数有关系,那么比和除法、分数到底有什么样的联系和区别呢?

1、(贴出表格)学生观察,小组讨论。

2、师生共同完成表格

提问:(1)为什么要用“相当于”这个词?能不能用“是”?(比与除法既有联系,也有区别,除法是一种运算,比则表示两个数之间相除的关系,所以只能用“相当于”这个词)(2)在除法中,除数不能是零,那比的后项呢?足球比赛中的比和我们今天学习的比相同吗?

师:比还有一种表示方法,就是分数形式。

比 教学设计与反思

人教版比教学设计

比应用教学设计与反思

六年级比教学设计与反思

人教版比意义教学设计

《人教版比意义教学设计.docx》
人教版比意义教学设计
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
相关文章
猜你喜欢