会计个人工作总结 专业技术个人总结 销售个人工作总结 员工个人工作总结 党员个人工作总结 医生个人工作总结 护士个人工作总结 村干部个人总结 试用期工作总结 银行个人工作总结 秘书个人工作总结 其他个人工作总结
首页 > 个人工作总结 > 专业技术个人总结

粉体机械专业技术总结

作者:gggggggggg时间:2020-10-15 下载本文

第1篇:粉体总结

1、等面积球当量径—与颗粒同表面积的球的直径;有助于描述粉末的成型过程及烧结过程,较适用于无气孔和轻微粗糙度表面的颗粒体系

2、由不同大小的颗粒组成的集合体由不同大小的颗粒组成的集合体——多分散系统

3、体是研究微小颗粒的集合体。当集合体颗粒大小相等或粉体是研究微小颗粒的集合体。当集合体颗粒大小相等或近似相等——单分散系统

4、目:系指在筛面的25.4mm(1英寸)长度上开有的孔数。20-120目(900-125um)[目数/2.5]2=孔数/cm2

5、TEM观察粉体的特点:能给出不同等效原理(如等面积圆、等效短径等)的粒度分布。 能观察颗粒形貌。能直接观察颗粒分散状况、分体样品的大致粒度范围、是否存在低含量的大颗粒或小颗粒情况等等。

6、频率分布曲线上的最高点是频率的极大值,表示最多数量的颗粒,其对应尺寸称为最多数径Dm(或众数直径,(或众数直径,modal diamater),其数量的多少可计算其面积。若曲线是关于Dm对称,即符合正态分布(normal distribution),此时,Dm=平均粒径 =Dmed(中位径)median diameter

7、累积分布曲线与频率分布曲线互为积分与微商的关系,若取同一横坐标,则累积分布曲线上各点斜率实际上,累积分布曲线与频率分布曲线互为积分与微商的关系,若取同一横坐标,则累积分布曲线上各点斜率dR/dD,即为频率分布曲线纵坐标上相应各点之值。,即为频率分布曲线纵坐标相应各点之值。频率分布曲线上任一点的纵坐标表示某粒径频率分布曲线上任一点的纵坐标表示某粒径D为中心的颗粒在dD范围内占物料百分数为范围内占物料百分数为dR,在频率分布曲线之下,粒径为,在频率分布曲线之下,粒径为D以左所包含的面积占曲线以下所包含面积百分比即为累积百分数以左所包含的面积占曲线以下所包含面积百分比即为累积百分数R%。

8、累积分布——反映粒度变化不敏感,要求出斜率→粒度变化,斜率大,粒度变化大;但数量上反映较为明显,从纵坐标可以看出,计算方便,工业生产常用。频率分布——反映频率变化,是动态变化,颗粒组成的变化,但不表示数量(各粒级数量的多少要计算面积)。研究工作中常用的方法。

9、D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位径或中值粒径。D50常用来表示粉体的平均粒度。D97:一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。D97常用来表示粉体粗端的粒度指标。中位径Dmed

10、定量描述粒子几何形状的方法:形状指数(shape index)、形状系数(shape factor)和粗糙度系数(roughne factorfactor)。单颗粒外形的几何量的各种无因次组合称为形状指数;形状系数——在表示颗粒群性质和现象的函数关系中,把与颗粒形状有关的因数作为一个系数加以考虑;粗糙度系数反映颗粒表面微观结构

11、用透射电镜可观察纳米粒子平均直径或粒径的分布,可以直接观察颗粒是否团聚,电镜观察法测量得到的是颗粒度而不是晶粒度.粗颗粒使用光学显微镜,SEM较TEM可观察到更多关于颗粒形状和表面结构信息,立体感强些。X射线是测定晶粒度的最好方法(当颗粒为单晶时,该法测得是颗粒度)对于混合多组分颗粒系统,由于组分密度不同,颗粒形状不同,要测量颗粒的大小电镜是较好的方法。

12、② 颗粒组成(颗粒分布):•激光法, 光透射:重力沉降 > 1μm,离心沉降 > 0.01μm 13.TEM观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒方法。当颗粒为单晶时,该法测得的是颗粒度。当颗粒为多晶时,该法测得的是组成单个颗粒的单个晶粒的平均晶粒度这种测量个颗粒的单个晶粒的平均晶粒度。这种测量法只适用于晶态的超微粉晶粒度的评估。实验表明晶粒度≤50时测量值与实际值验表明,晶粒度≤50nm时,测量值与实际值相近,反之,测量值往往小于实际值。

13、透气法—不受微观结构变化的影响,由颗粒大小,聚集体状态决定。只反映出外表面积不受微观结构变化的影响,由颗粒大小,聚集体状态决定。只反映出外表面积的大小;

14、BET法—颗粒的总表面积:除包括颗粒大小,聚集体状态外还包括了颗粒的裂纹沟槽聚集体状态外,还包括了颗粒的裂纹,沟槽的内表面,因此其数值较上法大的多

15、比表面积的测定范围约为0.1-1000m2/g,以ZrO2粉料为例,颗粒尺寸测定范围为lnm~l0μm.

16、UFP的制备方法:①长大法或者称化学法或者造粒法,合成法——通过化学反应或物相变化,从物质的原子、离子或分子入手, 经过成核和成长、收集两阶段;使颗粒在控制之下长大到要求的大小,这是使颗粒尺寸由小到大的制备方法——纳米粉体的制备方法

②碎细法或者称粉碎法、机械法——这种方法是通过对粗颗粒的粉碎,使其微细化从而成UFP。这是使颗粒尺寸由大变小的方法。是制备微米级颗粒的传统粉碎法的延伸。颗粒粒径在10~0.1μm范围,以两个数量级范围内的颗粒为对象——微米粉体制备 18单分散颗粒系统,其粒度分布呈正态分布

19振动磨制备的粉体粒度分布较窄、纯度较高物料。振动磨除粉碎效率较高外,另一个优点是物料在磨中翻动,从而使物料不易团聚

20气流粉碎机亦称(高压)气流磨或喷射磨或流能磨,是常用的超细粉碎设备之一。高速气流(300—500m/s)或过热蒸汽(300-400℃)的能量,使颗粒相互产生冲击、碰撞、摩擦而实现超细粉碎的设备。降低入磨粒度,可得到平均粒径1μm的产品。

21、随着颗粒微细化,细小颗粒之间的吸附作用,例如范德华引力、静电力、颗粒表面的水份附着力等;或者由于断裂后在新表面上产生的剩余价键带正或负电荷的结构单元或化学游离基的作用,使小颗粒聚结或附聚而成为大颗粒

22、根据生产工艺的要求,把粉碎产品按某种粒度大小或不同种类颗粒进行分选的操作过程称为分级。方法:干法分级和湿法分级

23、颗粒分级可以避免团聚

24、流体是空气时称为干式分级,利用水或者液体时则称为湿式分级。

25、凡是通过挤压、剪切、摩擦、磨剥、拉伸等作用对固体、液体、气体施加机械能,诱发一系列的物理化学性质的改变,称之力化学,或机械力化学。

26、经粉磨后物料活性有所提高的原因经粉磨后,物料活性有所提高的原因是什么?

答:活性提高的主要因素——无定形化的作用;活性提高的次要因素——颗粒尺寸 变小比表面积增大

27、机械力诱发的一系列变化可用X射线衍射、差热分析、红外光谱、反气相色谱法、溶解速度变化密度变化等进行研究

28、助磨剂一般为表面活性物质,具有降低比表面能和“楔入”粒子裂缝的作用。物料在细磨过程中,粒子逐步细化,比表面积增大,其表面因断键而荷电,粒子相互吸附并出现团聚使粉碎效率下降,加入少量助磨剂可以防止粒子团聚,改善物料,流动性,从而提高 研磨效率,缩短研磨时间。

29、颗粒在比较弱的引力作用下结团——附聚体;颗粒在比较强的化学键作用下结合为整体——聚结体

30、助磨剂作用机理:a.削弱固体颗粒强度——软化剂。裂纹的存在、扩展导致断裂,助磨吸附在裂纹上平衡了裂纹表面的剩余价键及电荷,避免裂纹愈合,提高了物料的易碎性。b.防止颗粒并合聚结——分散剂。平衡了颗粒表面上的剩余价键,使颗粒之间的附聚力得到屏蔽,避免颗粒的聚结,抑制粉碎逆过程,故有利于粉碎过程进行。

第2篇:粉体工程总结

1.粒径:颗粒在颗粒所占空间的线性尺寸.2.三轴径:以颗粒的长宽高定义的粒度平均值。(P1)3.当量径:颗粒与球或投影圆有某种等量关系的球或投影圆的直径。4.定向最大径:沿一定方向测得的颗粒投影像内最长线段的平均值。5.定向等分径:沿一定方向将颗粒投影像面积等分的线段长度平均值。6.定方向径:沿一定方向测得的颗粒投影像两平行线间距离的平均值。7.定方向径>定向最大径>定向等分径

8.粒度分布:表示不同粒径的粒子群在粉体中所分布的情况,反映粒子大小的均匀程度。粒度分布常表示为频率分布和累积分布。

9.频率分步表示各个粒径范围内对应的颗粒百分数含量;累积分布表示大于或小于某粒径的颗粒占全部颗粒的百分含量与该粒径的关系。

10.最频粒径在曲线最高点;中位粒径把样品个数二等分的颗粒粒径。11.粉末粒径测量的方法:显微镜法、激光法、沉降法和筛分发。12.颗粒形状定义:一个颗粒的轮廓边界或表面上各点所构成的图象;描述颗粒形状的方法:语言术语和数学术语。

13.形状因子包括:形状指数、形状系数、粗糙度系数。

14.形状因子:用某些几何参数的组合对颗粒的形状作定量描述

15.形状指数:表示单一颗粒外形几何量的各种无因次组合称为形状指数

16.形状系数:颗粒的表面积、体积、比表面积等几何参数与某种规定的粒径的相应次方的比例关系。

17.空隙率:在一定填充状态下,颗粒体积占粉体填充体积的比率。 18.空隙率:颗粒体积不包括颗粒的外孔(内外相通);孔隙率:颗粒体积不包括内外孔(内部封闭孔)。

19.颗粒密度:颗粒的质量除以包含闭孔在内的颗粒的表观体积。

20.松装密度:又称容积密度,指在一定填充状态下,包括颗粒间全部空隙在内的整个填充层单位体积中的颗粒质量。它与颗粒物料的密度,空隙率关系(公式)21.极限剪应力与垂直应力的关系的确定方法:破坏包络线法和摩尔圆。22.破坏包络线方程中,若C=0,包络线通过方程,则为无附着性粉体。23.休止角:是指粉体自然堆积时的自由表面在静止平衡状态下与水平面所形成的最大角度。24.内摩擦角:该极限应力状态下剪应力与垂直盈利的关系。

25.内摩擦角的确定:三轴压缩试验,也是测量内摩擦因数的方法。 26.休止角的测定方法:注入法、卸流法、倾容器法。

27.滑动摩擦角:粉体置于一个斜面上,当斜面倾斜至粉体开始滑动时,斜面与水平面之间的夹角。

28.粉体颗粒的最大特点是具有大的比表面积和表面能。

29.表面效应:颗粒直径变小,比表面积将会显著增大,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性

30.静电力、范德华力、液桥力比较:随着颗粒间距离的增大,范德华力迅速减小。当距离>1µm时,范德华力已不再存在。在H2~3µm的范围时,液桥力的作用非常显著,而且随着间距变化不大;如果在增大距离,它就突然消失了。H>2~3µm时,能促进颗粒团聚的就只有静电力了。

31.粉碎的定义:固体物料在外力作用下克服其内聚力使之破碎的过程。

32.粉碎的作用和意义:物料经粉碎之后,粒度显著减小,比表面积显著增大,因而有利于几种不同物料的均匀混合,便于输送和贮存,有利于提高高温固相反应速度和程度。 33.平均粉碎比:粉碎前的粒径/粉碎后的平均粒径

34.能耗理论:基克学说适用于产物粒度大于50µm;邦德学说0.5~50mm;雷廷格学说0.075~0.5mm。

35.颚式破碎机分为简摆式、复摆式和组合摆动式三种。

36.简摆式:很容易中大型化,并主要适用于坚硬粉料的粗中碎过程,物料多呈片状。 37.复摆式:中小型产品,磨损较严重,结构紧凑,破碎出的物料多为立方体,大大减少了片状产品。

38.两种颚式破碎机的区别:①简摆式颚式破碎机破碎比小,只有3到5,卸出的物料多呈片状;复摆式颚式破碎机破碎出的物料多为立方体,但易产生粉碎现象;②由于结构及运动方式的不同,复摆式磨损较严重;③复摆式结构紧凑,在具备相同生产能力时,设备重量减轻20%~30%;④复摆式运动轨迹更合理。

39.闭路流程:凡带检查筛分或选粉设备的粉碎流程。特点:从粉碎机卸出的物料须经检查筛分或选粉设备,粒度合格的颗粒作为产品,不合格粗颗粒物料重新回至粉碎机再次粉碎。40.粉碎方式:①挤压粉碎;②研磨粉碎;③劈裂粉碎;④冲击粉碎。

41.预筛分:一个研磨流程中,在物料进入破碎机之前率先进行筛分将比粉碎机出口产物更细的细粒子先筛分出来,直接进入下一步磨碎机的操作。

42.检查筛分:需要把不合格的产品筛分出来返回到破碎机进行再粉碎,从而控制破碎产品以符合粒度要求。

43.部分分机效率:某一粒度范围内分级后质量与原料质量的比值,部分分级效率反应了各种粒度范围内的分离程度。

44.牛顿分级效率:对特定粒度分级时,合格成分收集率与不合格成分的残留率之差。

45.牛顿分级效率物理意义:综合考虑合格细颗粒的收集程度和不合格粗颗粒的分离程度,更确切地反应分级设备的分级性能。(公式)46.分级精度(K):部分分级效率d75与d25比值。K值越大分级效率曲线越平缓,分级效率越差。

47.筛分:筛分物料置于具有一定筛孔大小的单个筛子上或一系列筛子上,使尺寸大于筛孔的颗粒截留在筛子上面,而比较小的颗粒通过筛孔至下一个筛子上,直到筛孔大小不能通过筛子为止。

48.根据筛面的运动方式,工业上筛分设备可分为振动筛、摇动筛、回转筛和固定筛。 49.①振动筛内物料的运动方式:垂直于筛面运动;②摇动筛物料的运动方式:平行于筛面运动;③回转筛物料的运动方式:绕圆筒轴线做圆周运动。

50.影响筛分的因素:1、物料因素:堆积密度、粒度分布、含水量、2、筛分机械因素:孔隙率、筛孔大小、筛孔形状、筛面种类、筛面长度、振动的幅度与频率、筛子的运动状态、加料的均匀性加料速度与料层厚度。

51.分级是根据粉体颗粒的大小或形状的差别将其分离的操作;分离是指将非均相物系中的不同的相分离的操作。

52.过滤:当分散至是固体颗粒的气体或液体非均相物系时,可通过多孔性的介质将固体颗粒截留。

53.分离效率:分离后获得的分体某种成分的质量与分离前粉体中所含该成分的质量之比。 54.收尘效率:分离器中出口处气体中粉尘的质量与进口处气体中粉尘的质量之比。(p151)00.部分收尘效率:对于某一粒级的颗粒的收尘效率(公式)55、一二级收尘效率。

56、旋风收尘器的工作原理:利用含尘气体高速旋转产生的离心力使颗粒与气体分离,含尘气体从进气管以较高的速度沿外圆筒的切线方向进入直筒并进行旋转运动,在旋转过程中产生较大的离心力,颗粒的惯性比空气大得多,大部分颗粒在离心力作用下甩向筒壁,失去动能沿壁面滑下与气体分开,经椎体排入贮灰箱内,然后经闸门自动卸出。

57.锁风装置的作用:若排灰口漏风1%,则y降低5%到10%;漏风5%,y降低50%;漏风达到15%,y降至0。

58、电收尘器是一种高效率收尘装置,能收下极微小的尘粒。优点:收尘效率高达99%以上,能处理高温、高压、高温和腐蚀性气体,能量消耗少,操作过程可实现完全自动化。

缺点:一次投资大,占空间大,钢材消耗多,捕集高比电阻的细粉尘时需要进行增湿处理。59.影响电收尘效率的因素:粉尘比电阻的影响、含尘浓度的影响、粉尘颗粒组成的影响、含尘气体温度的影响、气流速度的影响、气体湿度的影响。

60.混合:物料在外力作用下发生运动速度和运动方向的改变,使各组分颗粒均匀分布的操作过程。

61.控制最佳混合点的原因:混合进行至一定程度时,总是伴随着另一个相反的过程——逆混合过程,混合过程与偏析过程反复地交替进行。

62.影响混合的因素:①物料的物理性质;②混合机的结构;③操作条件。

63.临界转速:对于回转容器型混合机,当重力与惯性离心力平衡时,物料随容器以同样速度旋转,物料间失去相对流动不发生混合,此时的回转速度即临界速度。 64.常用的造粒方法:压缩法、挤出法、滚动法、喷浆法和流化法。

65.料仓内粉料卸出的流动形式:①漏斗流:当料仓内粉料在卸出时,只有贮料仓中央部分形成料流,而其他区域的粉料流不稳定或停滞不动,其流动区域呈漏斗状;②质量流:对于仓内整个粉体层,则希望能够像液体一样地均匀地全部向下流动。

66.漏斗流:当料仓内粉料在卸出时,只有贮料仓中央部分形成料流,而其他区域的粉料流不稳定或停滞不动,其运动区域呈漏斗状。缺点:①出料口流速不稳定,料拱的形成与破碎使流动通道不稳定;②死角处通道或穿孔的形式影响正常卸料;③料拱或穿孔的崩溃使被充气的细粉失控倾斜;④滞留区的物料会结块、变厚;⑤料位指示器易被埋于滞留区物料中。67.形成质量流的条件:流动通道与料仓壁是一致的,全部物料处于运动状态,控制好临界料位的高度。

68.整体流料仓的优点:避免粉料的不稳定流动、沟流和溢流;消除仓筒内的不流动区,形成先进先出;避免了储存期间的结块问题、变质以及偏析问题。

69.料仓的故障:粉体颗粒在运动、成堆或从料仓中卸料时,由于粒径、颗粒密度、颗粒形状、表面形状等差异,常常产生物料的分级效应和分离效应,使粉体层的组成呈不均匀的现象,即偏析。

70、偏析的种类:附着偏析、填充偏析、滚落偏析。

71.防止粉体偏析的措施:①均有投料法;②料仓的构造;③物料的改性。

72.粉体静态拱及防止措施:①压缩拱;②楔形拱;③黏结黏附拱;④气压平衡拱;措施:①改善料斗几何形状;②降低粉体压力;③减小仓壁摩擦阻力。

73、压缩拱:粉体因受料仓压力的作用,使固结强度增加而导致结拱所形成的。 74、楔形拱:块状物料因形状不规则相互结合达到力平衡,在孔口形成架桥。

75、黏结黏附拱:黏结性强的粉体因含水分,吸潮或静电吸附作用而增强粉体与仓壁的黏附力所致。

76、气压平衡拱:卸料装置气密性差,导致大量空气从底部漏人仓内,当料层上下气体压力达到平衡时,就会形成料拱。

77、结拱的临界条件:FF=ff 临界开放屈服强度(公式)

第3篇:粉体工程总结

第一章 颗粒几何形态特性

1.粒度:颗粒在空间范围所占大小的线性尺度。 2.粒径的表示方式:(1)三轴径

以颗粒的长度l、宽度b、高度h定义的粒度平均值称为三轴平均径。(2)球当量径:(3)圆当量径:

(4)定向径(又称统计平均径):平行于一定方向(用显微镜)测得的线度

定方向径(Feret径)dF、定方向等分径(Martin径)dM、定向最大径

3.粒度分布的概念

粒度分布是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。也就是说粉体中不同粒度区间的颗粒含量。4.粒度分布的表示方式

(1)频率分布:当用个数基准表示粉体的粒度分布时,将被测粉体样品中某一粒径或某一粒径范围的颗粒的数目称为频数n,而将n与样品的颗粒总数N之比称为该粒径范围的频率f,则

fn100% N

频数n或频率f随粒径变化的关系,称为频数分布或频率分布。

(2)累积分布表示小于(或大于)某一粒径的颗粒在全部颗粒中所占的比例。按照频数或频率累积方式的不同,累积分布可分为两类:

a)负累积:将频率或频数按粒径从小到大进行累积,所得到的累积分布表示小于某一粒径的颗粒的数量或百分数。这相当于在用筛分法测粒度时,通过某一筛孔的筛下部分的百分数,这样得到的曲线又称为累积筛下分布曲线,常用D(Dp)表示。

b)正累积:将频率或频数按粒径从大到小进行累积,所得到的累积分布表示大于某一粒径的颗粒的数量或百分数。相当于用筛分法测粒度时,通过某一筛孔之后的筛余部分的百分数,这样得到的曲线又称为累积筛上分布曲线,常用R(Dp)表示。

较之频率分布,累积分布更有用。许多粒度测定技术,如筛分法、重力沉降法、离心沉淀法等,所得到的分析数据,都是以累积分布显示出来的。它的优点是消除了直径的分组,特别适用于确定中位粒径(D50:在粉体物料样品中,把样品个数(或质量)分成相等两部分的颗粒粒径)等。5.粒度分布的表达形式

列表法、图解法、函数法 6.颗粒形状

颗粒的形状是指一个颗粒的轮廓或表面上各点所构成的图像。7.形状指数(1)均齐度

颗粒两个外形尺寸的比值。a)扁平度m=短径/厚度=b/h b)伸长度n=长径/短径=l/b(2)圆形度(又称轮廓比):定义了颗粒的投影与圆接近的程度

c与颗粒投影面积相等的圆的周长

颗粒投影的周长 1(3)球形度:表示颗粒接近球体的程度

Wadell球形度W与颗粒体积相等的球的表面积

颗粒的表面积由于同体积的几何形状中,球的表面积最小,所以,颗粒的球形度小于等于1。颗粒形状与球偏离越大,颗粒的W越小。8.粗糙度系数

R粒子微观的实际表面积(>1)

表观视为光滑粒子的宏观表面积9.粒度的测量方法

常用的粒度测量方法有显微镜法、筛分法、沉降法、激光法、点传感法、气体吸附法等。第二章 颗粒群的堆积性质 1.颗粒堆积的客观结构参数

(1)容积密度ρB:单位填充体积的粉体质量,又成视密度。

B(-1)P填充粉体的质量V =B粉体填充体积VB式中 VB—粉体填充体积

ρP—颗粒密度

ε—空隙率

(2)填充率ψ:颗粒体积占粉体填充体积的比率

填充的颗粒体积B=

粉体填充体积P(3)空隙率ε:空隙体积占粉体填充体积的比率

=1-=1-B P2.最密填充理论

(1)Horsfield填充

均一球按六方最密填充状态进行填充时,球与球间形成的空隙大小和形状有两种孔型:6个球围成的四角孔和4个球围成的三角孔。设基本均一球成为1次球(半径r1),填入四角孔中的最大球称为2次球(半径r2),填入三角孔中的最大球称为3次球(半径r3),随后再填入4次球(半径r4),5次球(半径r5),最后以微小的均一球填入残留的空隙中,这样就构成了六方最密填充,称为Horsfield填充。(1)r2=0.414r1(2)r3=0.225r1(3)r4=0.177r1(4)r5=0.116r1(5)最终填充结果:最终空隙率ε=0.149×0.2594=0.039(2)Hudson填充

当一种以上的等尺寸球被填充到最紧密的六方排列的空隙中时,空隙率是随着较小球与 2 最初大球的尺寸比值而变化的,空隙率随着四方孔隙中较小球的数目的增加而减小。实际上不不是这样,因为在三角形孔隙中,球的数目是不连续的。Hudson在金属固溶体的研究中,对半径为r2的等径球填充到半径为r1的均一球六方最密填充体的空隙,当r2/r1<0.4142时,可填充为四角孔;r2/r1<0.2248时,可填充为三角孔,r2/r1=0.1716时的三角孔基准填充最为紧密,最小空隙率为0.0030。这样的填充称为Hudson填充。3.粉体中颗粒间的附着力

范德华力、颗粒间的静电力、毛细管力、磁性力、机械咬合力 第三章 粉体力学 1.内摩擦角的确定

内摩擦角的测定方法有流出法、抽棒法、慢流法、压力法、剪切盒法等多种,最主要的是剪切盒法。2.安息角

又称休止角、堆积角、是指粉体自然堆积时,自由平面在静止平衡状态下与水平面所形成的最大角度。常用来衡量和评价粉体的流动性。对于球形颗粒,粉体的安息角较小,一般为23~28度之间,粉体的流动性好。规则颗粒的约为30度,不规则颗粒约为35度,极不规则颗粒的安息角大于40度,粉体具有较差的流动性。3.质量流与漏斗流

粉体在重力作用下自料仓流出的形式有质量流和漏斗流两种。如果料仓内整个粉体层能够大致均匀地下降流出,这种流动型式称为质量流(或整体流)。特点是“先进先出”。流动性良好或细粒散体可实现质量流。如果料仓内粉体层的区域呈漏斗形,使料流顺序紊乱,甚至有部分粉体滞留不动,造成先加入的物料后流出,即“后进先出”的后果。4.开放屈服强度和粉体流动函数 1)开放屈服强度

料仓内的粉体处在一定的压力作用下,因此,具有一定的固结强度(密实强度)。如果卸料口形成了稳定的料拱,该料拱的固结强度,即物料在自由表面上的强度就称为开放屈服强度(fc)。在预加压应力σ1作用下压实,取去圆筒,粉体试件不倒塌,说明具有一定的密实强度,这一密实强度就是开放屈服强度fc。若倒塌,则fc=0。fc小,流动性好,不易结拱。2)粉体流动函数

粉体的固结强度在很大程度上取决于预密实状态,即开放屈服强度fc与固结主应力σ1之间存在着一定的函数关系,詹尼克将其定义为粉体的流动函数FF。FF=σ1/fc

FF表征着仓内粉体的流动性,FF越大,粉体流动性越好。fc=0,FF=∞,粉体完全自由流动。

5.料斗流动因数

料斗流动因数ff来表示料斗的流动性,并定义流动因数为料斗内粉体固结主应力σ1与作用于料拱脚的最大主应力σ1之比。

ff值越小,料斗的流动条件越好。料斗设计时要尽量获得ff值小的料斗。6.偏析及其防止措施

(1)粉体流动过程中,由于颗粒间粒径、颗粒密度、颗粒形状及表面性状等的差异,粉体层的组成呈现出不均质的现象称为偏析。(2)粒度偏析类型

附着偏析、填充偏析(渗流偏析)、滚落偏析(3)偏析防止措施

a 采用多点装料,将一个料堆分成多个小料堆,可使所有各种粒度的各种组分(密度不同)

3 能够均匀地分布在料仓的中部和边缘区域。

b采用细高料仓,即在相同料仓容积条件下,采用直径较小而高度较大的料仓,可减轻堆积分料的程度。

c采用垂直挡板将直径较大的料仓分隔成若干个小料仓,构成若干个细高料仓的组合型式。此法适用于实际使用中高度受到限制而又要满足一定料仓容量的料位设计或改造。

d在料仓中设置中央孔管,即使落料点固定不变,但由于管壁上不规则地开有若干窗孔,粉料有不同的窗孔进入料仓不同的位置,实际上就是在不断地改变落料点,收到多点装料的效果。

e采用侧孔卸料,粉料从料仓侧面的垂直孔内卸出,以获得比较均一的料流。f在卸料口加设改流体以改变流型的方法,减轻漏斗流对偏析的强化作用。7.粉体拱的类型及防拱措施(1)粉体静态拱的类型

a压缩拱:粉体因受料仓压力的作用,使固结强度增加而导致起拱。

b楔形拱:块状物料因形状不规则相互啮合达到力平衡,在孔口形成架桥。c粘结粘附拱:粘结性强的物料在含水、吸潮或静电作用而增强了物料与仓壁的粘附力所致。d气压平衡拱:料仓回转卸料器因气密性差,导致空气泄入料仓,当上下气压力达到平衡时所形成的料拱。(2)防拱措施

a改善料仓的几何形状及其尺寸。b降低料仓粉体压力。c减小料仓壁摩擦阻力。

d降低物料水分,改善粉体流动性。第四章 颗粒流体力学 气力输送装置可分为:

(1)吸送式:将大气与物料一起吸入管内,靠低于大气压力的气流进行输送。适用于从多个供料点把粉体输送汇集到一个点的场合。输送能力较小,压力损失也小,且吸嘴的结构简单。

(2)压送式:用高于大气压力的压缩空气推动物料进行输送。适用于把粉体从一个供料点分配输送到几个点的场合,压头损失大,输送能力大,可作长距离输送。

第五章 粉碎及设备

一、粉碎的定义

固体物料在外力作用下,克服内聚力,从而使颗粒的尺寸减小,比表面积增大的过程称为粉碎。

粗碎-将物料破碎至100mm左右破碎中碎-将物料破碎至30mm左右细碎-将物料破碎至3mm左右粉碎

粗磨-将物料粉磨至0.1mm左右粉磨细磨-将物料粉磨至60m左右超细磨-将物料粉磨至5m或更小

二、粉碎比

物料粉碎前的平均粒径D与粉碎后的平均粒径d之比称为平均粉碎比。

三、粉碎流程

4 根据不同的生产情形,粉碎流程可由不同的方式。(a)为简单的粉碎流程;(b)为带预筛分的粉碎流程;(c)为带检查筛分的粉碎流程;(d)为带预筛分和检查筛分的粉碎流程。

凡从粉碎(磨)机中卸出的物料即为产品,不带检查筛分或选粉设备的粉碎(磨)流程称为开路(或开流)流程。

凡带检查筛粉或选粉设备的粉碎(磨)流程称为闭路(圈流)流程。

四、粉碎方式和分类

粉碎方式主要有挤压粉碎、冲击粉碎、摩擦剪切粉碎和劈裂粉碎。

五、粉碎模型

(1)体积粉碎模型:整个颗粒均受到破坏,粉碎后生成物多为粒度大的中间颗粒。随着粉碎过程的进行,这些中间颗粒逐渐被粉碎成细粉成分。冲击粉碎和挤压粉碎与此模型较为接近。

(2)表面粉碎模型:在粉碎的某一时刻,仅是颗粒的表面受到破坏,被磨削下微粉成分,这一破坏基本不涉及颗粒内部。这种情形是典型的研磨和磨削粉碎方式。

(3)均一粉碎模型:施加于颗粒的作用力使颗粒产生均匀的分散性破坏,直接粉碎成微粉成分。

六、易碎性

所谓易碎性即在一定粉碎条件下,将物料从一定粒度粉碎至某一指定粒度所需的比功耗——单位质量物料从一定粒度粉碎至某一指定粒度所需的能量,或施加一定能量能使一定物料达到的粉碎细度。

七、粉碎机械力化学 1.机械力化学概念

在粉碎过程中,不仅颗粒的尺寸逐渐变小,比表面积不断增大,而且其内部结构、物理化学性质以及化学反应性也相应产生一系列的变化,此即为粉碎机械力化学现象。2.助磨剂助磨作用

(1)助磨剂分子吸附于固体颗粒表面上,改变了颗粒的结构性质,从而降低颗粒的强度或硬度。

(2)助磨剂吸附于固体颗粒表面上,减小了颗粒的表面力。

(3)添加助磨剂,使物料颗粒的表面自由能和晶格畸变程度减小,促使颗粒软化;助磨剂吸附在颗粒表面上能平衡因粉碎产生的不饱和价键,防止颗粒再度聚结,从而抑制粉碎逆过程的进行。以上两者均可加速粉碎,产生助磨作用。

八、破碎设备 1.颚式破碎机

(1)根据其动颚的运动特征颚式破碎机可分为简单摆动、复杂摆动和综合摆动型三种型式。

(2)颚式破碎机的规格用进料口的宽度和长度来表示,如PEJ1500×2100颚式破碎机,即表示进料口宽度为1500mm,长度为2100mm的简单颚式破碎机。PEJ为简单颚式破碎机,PEF为复杂颚式破碎机。(3)颚式破碎机的构造

颚式破碎机主要由机架和制成装置、破碎部件、传动机构、拉紧机构、调整机构、保险装置和润滑冷却系统等部件组成。

调整装置:为了得到所需要的产品粒度,颚式破碎机都有出料口的调整装置。大、中型破碎机出料口宽度是由使用不同长度的推力板来调整;小型颚式破碎机通常采用楔铁调整方法。

保险装置:一般颚式破碎机的安全装置是将推力板分成两段,中间用螺栓连结,设计 5 时适当减弱螺栓的强度;也有在推力板上开孔或采用铸铁制造,推力板的最小断面尺寸是根据破碎机在超负荷时能自行断裂而设计的。当破碎机过载时,螺栓即被切断或推力板折断,动颚即停止摆动。

(4)工作参数的确定

钳角:颚式破碎机动颚与定颚之间的夹角。减小钳角可增加破碎机的生产能力,但会导致破碎比减小;反之,增大钳角可增大破碎比,但会降低生产能力,同时,落在颚腔中的物料不易夹牢,有被推出机外的危险。2.锤式破碎机

(1)锤式破碎机的规格用转子的直径(mm)×长度(mm)来表示,如φ2000mm×1200mm锤式破碎机表示破碎机的转子直径为2000mm,转子长度为1200mm。

(2)锤子是自由悬挂的,当遇到难碎物时,能沿销轴回转,起到保护作用,因而避免机械损坏。另外,在传动装置上还装有专门的保险装置,利用保险销钉在过载时被剪断,使电动机与破碎机转子脱开从而起到保护作用。3.反击式破碎机(1)工作原理

反击式破碎机的主要工作部件为带有板锤的高速转子。喂入机内的物料在转子回转范围(即锤击区)内受到板锤冲击,并被高速抛向反击板再次受到冲击,然后又从反击板弹回到板锤,重复上述过程。在如此往返过程中,物料之间还有相互撞击作用。由于物料受到板锤的打击、与反击板的冲击及物料之间的相互碰撞,物料内的裂纹不断扩大并产生新的裂缝,最终导致粉碎。当物料粒度小于反击板与板锤之间的缝隙时即被卸出。

反击式破碎机的规格用转子直径(mm)×长度(mm)表示。

(2)反击装置通常带有卸料间隙调整机构,通过调整卸料间隙可改变冲击次数,从而在一定程度上改变产品的粒度组成。在破碎腔内进入难碎物时,反击板可绕悬挂点适当摆动,增大它与板锤之间的间隙,当难碎物通过后,它又迅速恢复至原位。因此,这种结构还起着保险作用。

九、球磨机 1.工作原理

当磨机一不同转速回转时,筒体内的研磨体可能出现三种基本情况。

(1)周转状态:表示转速太快,研磨体与物料帖附筒体上一道运转。研磨体对物料起不到冲击和研磨作用。(2)倾泻状态:表示转速太慢,研磨体和物料因摩擦力被筒体带到等于摩擦角的高度时,研磨体和物料就下滑。对物料有研磨作用,但对物料没有冲击作用,因而使粉磨效率不佳。(3)抛落状态:表示转速比较适中,研磨体提升到一定高度后抛落下来。研磨体对物料有较大的冲击和研磨作用,粉磨效果较好。2.球磨机的构造(1)筒体

磨门:筒体上的每一个仓都开设一个磨门(又称人孔)。设置磨门是为了便于镶嵌衬板、6 装填或倒出研磨体、停磨检查磨机的情况等。(2)衬板

衬板的作用是保护筒体,使筒体免受研磨体和物料的直接冲击和摩擦;另外,利用不同形式的衬板可调整磨内各仓研磨体的运动状态。类型主要有平衬板、压条衬板、凸棱衬板、波形衬板、阶梯衬板等。(3)隔仓板

作用是a.分隔研磨体;b.防止大颗粒物料窜出料端;c.控制磨内物料流速。第六章 分级与分离

一、基本概念

1.利用分离特性将成分不同的混合物或相混合物(例如气——固相、液——固相)分成成分或相组分不同的两部分或两部分以上的过程称为分离。

2.分离效率

分离后获得的某种成分的质量与分离前粉体中所含该成分的质量之比称为分离效率。3.分级粒径

分级粒径也称切割粒径,将部分分离效率为50%的粒径称为切割粒径。

二、机械分级设备(筛分)

(1)定义:把固体颗粒置于具有一定大小孔径或缝隙的筛面上,使通过筛孔的成为筛下料,被截留在筛面上的成为筛上料,这种分级方式称为筛分。(2)筛序:

由粗到细的筛序、由细到粗的筛序、混合筛序。(3)筛制:公制和英制

三、颗粒流体系统分级设备 1.气流分级机的分级过程:

(1)分散:将附着或凝聚在一起的颗粒聚集体分散成单个颗粒;

(2)分离:组合各种力的作用,使颗粒获得速度差,实现粗、细颗粒的分离;(3)捕集:从气流重分离与捕集颗粒;(4)卸出。2.离心式分级机(1)工作原理

物料由加料管经中轴周围落至撒料盘上,受离心惯性力作用向周围抛出。在气流中,较粗颗粒迅速撞到内筒内壁,失去速度沿壁滑下。其余较小颗粒随气流向上经小风叶时,又有一部分颗粒被抛向内筒壁被收下。更小的颗粒穿过小风叶,在大风叶的作用下经内筒顶上出口进入两筒之间的环形区域,由于通道扩大,气流速度降低,同时外旋气流产生的离心力使细小颗粒离心沉降到外筒内壁并沿壁下沉,最后由细粉出口排出。内筒收下的粗粉由粗粉出口排出。

改变主轴转速、大小风叶片数或档风板位置即可调节选粉细度。3.旋风式选粉机

(1)构造和工作原理

在选粉室8的周围均匀分布着6~8个旋风分离器。小风叶9和撒料盘10一起固定在选粉室顶盖中央的旋转轴4上,由电动机1经皮带传动装置

2、3带动旋转。空气在离心风机19的作用下以切线方向进入选粉机,经滴流装置11的间隙旋转上升进入选粉室(分级室)。物料由进料管5落到撒料盘后向四周甩出与上升气流相遇。物料中的粗颗粒由于质量大,受撒料盘及小风叶作用时而产生的离心惯性力大,被甩向选粉室内壁而落下,至滴流装置处与此处的上升气流相遇,再次分选。粗粉最后落到内锥筒下部经粗粉出口排出。物料中的细颗

7 粒因质量小,进入选粉室后被上升气流带入旋风分离器7被收集下来落入外锥筒,经细粉出口管8排出。气固分离后的净化空气出旋风 分离器后经集风管6和导风管14返回风机19,形成了选粉室外部气流循环。循环风量可由气阀16调节。支管调节气阀17用于调节经支风管15直接进入旋风分离器(不经选粉室)的风量与经滴流装置进入选粉室的风量之比,控制选粉室内的上升气流速度,借此可有效调节分级产品粒度。改变撒料盘转速和小风叶数量也可单独调节细度,但通常主要靠调节气流速度的气阀来控制细度,这种调节方法方便且稳定。

4.高效选粉机

第三代新型高效选粉机,采用新的分级机理,其主要特点是选粉气流为涡旋气流。(1)O-Sepa选粉机工作原理

物料通过料管9喂入,撒料盘将物料抛出,经缓冲板撞击失去动能,均匀地沿导流叶片内侧自由下落到分级区内,形成一垂直料幕。根据气流离心力和向心力的平衡,物料产生分级。合格的细粉随气流一起穿过转子而排出,最后由收尘器收集下来成为成品,粗粉落入锥形料斗并进一步受来自三次风管的空气的清洗,分选出贴附在粗颗粒上的细粉。细粉随三次风上升,粗粉则卸出。

(2)O-Sepa选粉机分级原理

在选粉机内,粉体颗粒随气流作涡旋运动,颗粒切线方向的分速度为vt,颗粒受沿旋流半径向外的离心力Fr的作用;另一方面,按切线方向进入的空气从中心管排出,在作旋回运动的同时,保持向心分速度vr,产生向内的作用力FR,颗粒与气流的相对速度为Ur。当Fr>FR时,颗粒向外运动成为粗粉;当Fr

四、固气分离设备

1.收尘器的分类及特点 按分离原理可分为:

A.重力收尘器:利用重力使粉尘颗粒沉降至器底,如沉降室等。能收集的粉尘粒径在50微米以上。

B.惯性收尘器:利用气流运行方向突然改变时其中的固体颗粒的惯性运动而与气体分离,如百叶窗收尘器等。分离粒径一般大于30微米。

C.离心收尘器:在旋转的气固两相流中利用固体颗粒的离心惯性力作用使之从气体中分离出来,如旋风收尘器。分离粒径可达5微米。

D.过滤收尘器:含尘气体通过多孔层过滤介质时,由于阻挡、吸附、扩散等作用而将固体颗粒截留下来,如袋式收尘器、颗粒层收尘器等。分离粒径可达1微米。E.电收尘器:在高压电场下,利用静电作用使颗粒带电从而将其捕集下来,如各种静

-电收尘器。分离粒径可达102微米。

2.旋风收尘器 (1)工作原理

含尘气体从进风管以较高速度(一般为12~25m/s)沿外圆筒的切线方向进入直筒2并进行旋转运动。含尘气体在旋转过程中产生较大的离心力,由于颗粒的惯性比空气大得多,因此将大部分颗粒甩向筒壁,颗粒离心沉降至筒壁后失去动能沿壁面滑下与气体风开,经锥体3排入贮灰箱4内,积集在贮灰箱中的粉料经闸门自动卸出。当旋转气流的外旋流Ⅰ向下旋转到圆锥部分时,随圆锥变小而向中心逐渐靠近,气流到达锥体下端时便开始上升,形成一股自下而上的内旋气流Ⅱ,并经中心排气管6从顶部作为净化气体排出。3.袋式收尘器

(1)工作原理与特点

8 一种利用多孔纤维滤布将含尘气体中的粉尘过滤出来的收尘设备。因为滤布做成袋形,所以一般称为袋式收尘器或袋式除尘器。

含尘气体通过滤布层时,粉尘被阻留,空气则通过滤布纤维间的微孔排走气体中大于滤布孔眼的尘粒被滤布阻留,这与筛分作用相同。对于1~10微米的小于滤布孔径的颗粒,当气体沿着曲折的织物毛孔通过时,尘粒由于本身的惯性作用撞击于纤维上失去能量而贴附在滤布上。小于1微米的微细颗粒则由于尘粒本身的扩散作用及静电作用,通过滤布时,因孔径小于热运动的自由径,使尘粒与滤布纤维碰撞而黏附于滤布上,因此,微小的颗粒也能被捕集下来。

在过滤过程中,由于滤布表面及内部粉尘搭拱,不断堆积,形成一层由尘粒组成的粉尘层,显著地强化了过滤作用,气体中的粉尘几乎被全部过滤下来。

4.电收尘器 (1)工作原理

将平板1(或圆管壁)和导线6分别接至高压直流电源的正极(阳极)和负极(阴极)。电收尘器的正极称为沉积极或集尘极,负极称为电晕极。在两极间产生不均匀电场。当电压升高至一定值时,在阴极附近的电场强度促使气体发生碰撞电离,形成正、负离子。随着电压继续增大,在阴极导线周围2~3mm范围内发生电晕放电,这时,气体生成大量离子。由于在电晕极附近的阳离子趋向电晕极的路程极短,速度低,碰到粉尘的机会较少,因此绝大部分粉尘与飞翔的阴离相撞而带负电,飞向集尘极,如图,只有极少量的尘粒沉积于电晕极。定期振打集尘极及电晕极使积尘掉落,最后从下部灰斗排出。

五、固液分离 1.过滤

用过滤介质捕集分离液体中不溶性悬浊颗粒的操作称为过滤。以重力、压力和离心力作推进力。按用途可分为:

(1)滤饼过滤:悬浊液的浓度相当高,在过滤介质表面上形成的滤饼中,如有1%以上的固体颗粒,约占3%~20%的体积起过滤作用者称为滤饼过滤。

(2)澄清过滤:当过滤0.1%以下至百万分之几的极薄悬浊液时,颗粒被捕收于过滤介质的内部或表面,几乎不生成滤饼,其目的在于提取澄清液,故称澄清过滤。第七章 混合与造粒

一、混合定义

粉体的混合是指两种或两种以上的组分,按不同的目的,用选定的混合机均匀地混合在一起,其过程称为混合,产品称为混合。这种操作又称为均化过程。

二、混合机理

(1)移动混合——粒子成团地移动;

(2)扩散混合——把粒子撒到新出现的粉体面上;(3)剪切混合——粉体内形成滑移面。

三、混合过程

混合与偏析是相反的两个过程。一正一反,反复进行,最后达到混合偏析的平衡。所谓偏析,是物料的分离过程。若物料的特性差别很大,如密度、粒度或形状具有相当大差别的颗粒,其偏析程度就大。故在某种情况下,对物料进行预处理,就可降低物料的偏析。

物料混合的前期,进行迅速的混合,达到最佳混合状态,而混合的后期,则会产生偏析,一般再不能达到最初的最佳混合状态。因此,对于不同的物料,掌握其最佳混合时间是至关重要的。

四、混合机械及设备 1.浆料搅拌机 分类

9 1)按搅拌动力分:机械搅拌和气力搅拌。机械搅拌是利用适当形状的浆叶在料浆中的运动来达到搅拌的目的;气力搅拌是利用压缩空气通入浆池使料浆受到搅拌。2)按搅拌浆叶的配置分:水平和立式。水平多做混合或碎解物料用;立式多做搅拌用。3)按搅拌浆叶的形式分:桨式、框式、螺旋桨式、锚式和涡轮式等。如图。4)按浆叶运动特点分:定轴转动和行星转动。2.粉料混合机

1)螺旋式混合机

螺旋式混合机用于干粉料的混合、增湿或潮解黏土等,可分为单轴和双轴两种类型。单轴螺旋式混合机。由U型料槽

1、主轴

2、紧固在主轴的不连续螺旋浆叶3(或带式螺旋叶)以及带动主轴转动的驱动装置组成。

双轴螺旋式混合机。料槽3内装有两根带有螺旋浆叶的轴1和轴2。动轴1由电动机4通过减速器5带动,而从动轴2通过齿数相同的齿轮副6传动。螺旋轴转速一般为20~40r/min。

按料槽内料流方向的不同,双轴螺旋式混合机有并流式和逆流式两类。并流混合时,两轴转向相反,螺旋浆叶的旋向也相反,物料沿同一方向并流推送;逆流混合时,两轴转向相反,螺旋浆叶旋向相同,使物料往返受到较长时间的混合。两轴转速不同,送往卸料口的速度比反向流动的速度快,使物料最终移向卸料口卸出。

可用改变浆叶角度来调节物料通过混合机混合机的速度,从而调节混合程度。当需要充分混合时,则采用逆流式混合机。当用作干料混合时浆叶转向宜由里向外壁方向转动,增湿混合则宜由外壁向里转。

五、凝聚的结合机理

为了使颗粒凝聚,颗粒间必须有结合力的作用。其可能的机理有:

(1)固体架桥:由于烧结、熔融、化学反应使一个颗粒的分子向另一个颗粒扩散。(2)液体架桥和毛细管压强:在液体架桥中,界面力和毛细管压强可产生强键合作用,但如果液体蒸发则此种结合会消失。

(3)不可自由移动结合剂架桥处的粘附合内聚力:如焦油等高黏度结合介质能形成合固体架桥非常相似的结合力,其吸附层是固定在某些环境下能促进细粉粒的结合。

(4)固体粒子间的吸引力:如固体颗粒间距离足够短,则静电力、磁力、范德华力,可以导致粉粒黏附在一起。

(5)封闭型结合:如小片状细粒,可相互交叉或重叠而形成“封闭型”结合。

六、造粒方法

(1)凝聚造粒法:含少量液体的粉体,固液体表面张力作用而凝聚。用搅拌、转动、振动或气流使干粉体流动,若再添加矢量的液体粘结剂,则可像滚雪球似的使制成的粒子长大,粒子的大小可达数毫米至几十毫米。常用的机械为盘式成球机。

(2)挤压造粒法:用螺旋、活塞、辊轮、回转叶片对加湿的粉体加压,并让其通过孔板、网挤出,可制得0.2毫米至几十毫米的颗粒。

(3)压缩造粒法:分在一定模型中压缩成片剂合在两个对辊间压缩成团块两种,可制得粒径均齐、表面光滑、密度大的颗粒、(4)破碎造粒法:有辊轮压缩制成的碎片,再用回转叶片粉碎制得细粒状的凝聚造粒粒子,有干法和湿法两种。尤其湿法可制得0.1~0.3mm的细颗粒。

(5)熔融造粒法:让熔融状的物质细化后冷却凝固。细化方法:喷射、有板上滴下、将熔融也粘附于冷却转筒凝固而成碎片状、将熔融液注入铸型等。

(6)喷雾造粒法:分为溶液喷雾干燥和喷雾冷却法。

第4篇:粉体工业静电防护技术

粉体工业静电防护技术研究进展

1 引言

随着全球工业化进程的加快,生产粉尘、粉末和颗粒状物质的粉体工业迅猛发展。改革开放二十多年来,我国粉体工业生产规模迅速扩大,发展速度前所未有。以石油化工行业聚烯烃粉体生产为例,1982 年全国年产量不足100 万吨,1989 年则突破了200 万吨大关,1996 年年产量达到320 万吨;近年来,我国合成树脂和塑料年产量仍然保持20 %的增长速度。如煤炭、冶金、纺织、粮食等其他行业涉及粉体工业的生产规模亦以年产量增长速度超过15 %的态势呈规模化发展趋势。与此同时,粉体工业生产中引起的爆炸和燃烧事故也迅速增多。如哈尔滨亚麻厂粉尘爆炸事故,广东新港粮食储仓粉体爆炸事故均发生在20 世纪80 年代初期.据统计资料分析,随着我国经济发展速度的加快,粉体爆炸与燃烧事故越来越频繁。以粉尘爆炸统计数据资料为例,我国自1960 年至1989 年30 年间,发生粉尘爆炸次数按年代百分比的分布为: 1960年至1969 年占总数的9。37 %,1970 年至1979 年占总数的3。13 %,1980 年至1989 年占总数的87.50 %,此数据充分表明,粉体事故与国民经济发展规模之间有着密切的联系,同时说明了粉体防灾技术研究的意义与作用。上述粉体灾害事故和其发展态势引起了人们的极大关注,对我国经济发展和社会稳定造成了较大的影响,我国政府和有关行业主管部门及相关的研究单位对此类灾害事故高度重视[1,3 ]。这些因素对促进和加强我国粉体工业防灾技术研究工作,对防粉体灾害技术的应用推广和进一步落实企业的专项整改与治理措施等方面都起到了积极的推动作用.统计资料显示,粉体工业灾害事故与粉体静电密切相关[1—4]。从一组引起粉体灾害事故(粉尘爆炸)的点火源数据统计百分比分析可知: 由热表面引爆的占38。71 %,由明火引爆的占32。26 %,静电与电气火花引爆的占16。13 %,其他因素引爆的占12。90 %。由可见,在粉体工业生产过程中,由于静电与电气火花引起粉尘爆炸事故的比例是比较大的,其中静电的危害已到了必须引起人们高度重视的程度。事实上,在人类现代生产和生活活动中,静电存在的范围很广。静电在给我们带来极大便利的同时(如静电复印、静电除尘、静电喷涂、静电成像、静电生物效应和纳米材料制备等),也给人类社会带来了各种各样的麻烦甚至引发灾难性事故。正因为静电事故遍及矿业、冶金、石油化工、纺织、医药、粮食加工与储运、交通运输、航天航空、通讯与军工等行业,所以对静电灾害与防护技术的研究一直是现代社会关注的热点课题之一 在众多的静电研究课题中,由于粉体静电灾害问题涉及专业面广,致灾过程复杂,模拟实验难度大,费用高等原因,所以相对于现代静电研究的其他领域而言,粉体静电灾害的研究在其起电机理、致灾条件和防范对策等方面相对滞后。虽粉体静电防灾领域需要研究解决的问题很多,但自20 世纪50 年代以来,这方面的研究进展一直不大,其研究水平远远落后于液体防静电灾害等技术研究,与实际要求存在较大的差距。然而从Maurer(1979 年)报道了粉体大料仓堆表面放电现象之后,以瑞士Ci2ba 公司和英国南开普敦大学为中心,在国际上迅速形成了一个以粉体工业生产实际尺度的粉体静电放电问题为研究对象的研究热点,并进一步提出了一些与生产过程密切相关的防静电规范或建议。与此同时,德国、瑞士、挪威、波兰及前苏联等欧洲防爆委员会成员国,以及我国、日本、美国等国的相关部门和研究单位,也相继开展了超细粉尘和非标准条件下的燃烧与爆炸实验,静电场分析计算及体起电、放电等理论与实验研究工作。这些研究工作极大地丰富了人们对粉体静电 危险性的认识,特别是与工业控制和安全评价有关的粉体静电研究结果,对粉体工业安全生产具有十分重要的意义和指导作用 2 粉体静电灾害概况 现代工业生产过程中的粉体是粉尘、粉末及颗粒状物质的总称。一般而言,我们将粒径d > 0.5mm的物质称作颗粒;将粒径d 在100μm和0。5mm之间的物质称作粉末;将粒径d

3 粉体静电危险性评价方法研究发展

概况

通过对静电放电火花实际点燃危险性量化分析研究,近年来已经取得了可用于对粉体实际生产过程中的静电危险性进行定量评价的研究结果。建立在静电点燃现实危险性基础上的静电放电火花点燃危险性的量化分析理论,相关的静电参数测试方法,生产工艺过程现场数据取样和评价技术,促使粉体善,有关研究和管理部门已经将相关研究结果应用于具体的生产实际

3.1 粉体起电机理研究

粉体是特殊状态下的固体物质,其静电起电过程遵循固体的接触起电规律。目前,人们对金属-金属、金属-半导体的接触起电机理研究结果已经达到实用化水平的要求。然而对于高分子聚合物材料的起电机理研究而言,由于聚合物内部结构的复杂性以及起电机理性实验结果的重复性不好等原因,对其起电机理性的研究方法尚在不断的完善之中[8]。然而,对于粉体工业生产中粉体气力输送的粉体静电起电问题,人们结合两相流动力学理论、电介质物理学、粒子介质之间的相互作用等理论研究,年来已经分析总结出了一些可用于实际分析的有关粉体起电的半经验公式[9,10]。

3.2 粉体静电参数测试技术

有关粉体状物质的静电参数(电阻率ρ、介电常数ε、电位U、电场强度E 及电荷密度q 等)的实验室测量,从理论分析到测试方法都比较成熟,有些测试方法和具备防爆条件的测量仪表也已经直接应用于实际生产场所的粉体静电参数的数据测试[11,12]。近年来,人们可以在工尺度的大型粉体模拟装置上设置粉体静电试验,方便、高效地测试粉体静电参数,便利开发、试用防粉体静电灾害的技术和产品,这为进一步深入研究与解决粉体静电问题提供了实验手段上的保证。相关科研单位研究开发的非接触式管道粉体静电电荷密度测量仪,在完善防爆设计后即可应用于粉体工业输送与储运系统的粉体静电监测[13]。粉体、聚合物电荷空间分布的测量方法研究也有了较好的研究结果。几十年来,人们已经积累了大量的有关粉体方面的静电参数,从相关的基本静电参数到实际生产中不同性质的粉体起电参数都比较全面.3.3 粉体起电、放电特性(包括辐射场)研究

人们在小、中、大型粉体静电模拟实验装置上,尤其是工业尺度的粉体模拟试验装置上成功地模拟了电晕放电、刷形放电、火花放电、堆表面放电及传播型刷形放电等典型的粉体生产中存在的静电放电现象,使有关粉体的静电危险性研究水平上了一个大的台阶[14,15]。在这些极为有效的试验设备上,人们成功地测定了粉体的起电量,研究了粉体的起电特性,综合研究了粉体料仓的粉体电荷密度、荷质比、放电电荷转移量、料仓内的电势分布与电场强度的分布特点、粉体放电间隔特点、放电信号频率等对于粉体静电危险性评估有重要价值的相关物理量[7,16,17]。通过大量的静电放电测试试验,统计、研究、探讨和总结了粉体工业生产中可能发生的不同类型静电放电的辐射场特性,其试验研究数据为粉体工业生产现场检测与监测仪表的电磁兼容性设计提供了有价值的数据;同时结合气体等介质的击穿理论,建立了典型的静电放电理论模型

3.4 可燃物质的燃爆特性研究

自20 世纪80 年代中、后期起,标准条件下(标准实验样品、标准测试条件)可燃粉体、可燃气仪器,已经基本上达到了国际标准化。所以有关可燃物在标准状态下的最小点火能、爆炸极限、最小点燃温度、最大实验安全间隙、自燃温度、闪点、极限氧浓度等数据,基本上都可以从标准出版物上引用。近年来,有关非标准状态和非标准条件下的可燃物质燃爆参数研究,人们从实验和理论分析两方面作了不少的工作[19,24,33]。非标准粒径粉尘最小点火能与粉尘中位粒径的关系,杂混合物最小点火能与可燃气体浓度的关系,粉尘最小点火能与温度的关系,负压条件下可燃物爆炸极限的变化,高压条件下可燃物自燃温度的变化等对实际安全评价有重要意义的燃爆参数数据库,也在积极完善之中.结合气力两相流动理论和燃烧反应动力学理论,借鉴比较完善的可燃气体燃烧理论,初步建立了粉尘、杂混合物(粉尘,可燃气)燃烧理论分析模型

3.5 粉体静电放电点燃特性研究

粉体静电放电火花的火花时间特性和空间分布特征、形成放电的初始条件和放电电荷转移量等点火源因素,可燃物质的燃爆特性参数都对粉体静电放电的实际点燃能力有影响。近年来,人们将研究重点放在粉体料仓内粉体静电放电的点燃能力研究上,但由于研究手段上的原因,只能将料仓内的放电通过环形收集电极引出,在放电区以外的极隙内做点燃实验。这样由实验所得到的放电相当能量Eeq,在一定程度上反映了粉体放电的点燃能力。实验与实际静电点燃事例统计表明,粉体生产过程中可能产生静电灾害的静电放电形态和有效点燃能量Eef大致如下:(1)电晕放电的有效点燃能量不大于01025mJ;(2)普通的刷形放电单次放电的有效点燃能量可达3mJ;(3)料仓粉体堆表面放电单次放电的有效点燃能量可达10mJ;(4)人体放电单次电的有效点燃能量可达30mJ;(5)火花放电单次放电的有效点燃能量可达1J;(6)传播型刷形放电单次放电的有效点燃能量可达10J。有关粉体静电放

电实际点燃可燃物的过程研究,对于了解和研究放电火花的现实点燃能力是有重要意义的。结合介质击穿过程的放电物理学和燃烧学理论,关于气体、粉尘的静电放电火花点火模型理论和气体、粉尘的点燃过程研究近年来也取得了一些较好的研究结果

3.6 粉体静电放电危险性评估与仿真模拟

有关粉体静电放电危险性研究主要侧重于引发火灾、爆炸事故的危险性方面。对于规模一般都比较大的粉体生产而言,这种危险性主要反映在火灾、爆炸事故的敏感性参数上,也就是可燃物被静电放电火花引燃的特性上。这样,由带电粉体物质的基本静电参数、粉体量大小及边界条件所确定的带电粉体空间可能产生的静电放电类型、静电放电火花的点燃能力,结合产生静电放电场所的可燃物燃爆特性,即可以定量评价粉体静电放电的实际危险性.通过研究典型静电放电火花的实际点燃能力,对实际生产工艺过程中的静电放电火花的点燃危险性进行定量评价。静电放电火花的放电相当能量、放电火花空间分布范围和放电火花持续时间,决定了静电放电火花实际点燃可燃物的可能性大小,因此不同类型的静电放电火花点燃可燃物的差异性很大.根据数据序列理论分析,引入静电放电火花点火源序列和可燃物危险性序列之间存在的关联性,反映了静电放

电火花点燃可燃物的危险程度,可用于对静电放电火花的实际点燃危险性进行量化评价。有关粉体的电荷弛豫理论和粉体静电场分析模型研究以及电场仿真和计算分析,一直是静电防灾研究的前沿热点课题。近年来由于粉体静电检测技术的发展,大力促进和支持了粉体静电仿真技术的研究,使得粉体静电仿真技术研究成果离实用阶段越来越近[7,24,25]。同时,有关粉体静电模拟仿真的研究结果也弥补了实际粉体静电测量技术的不足和现场测量场所的限制(如引入测量仪器对原静电场的影响等),可以帮助人们更详细地了解带电粉体空间的电场变化等情况.4 粉体防静电灾害技术发展概况

粉体防静电灾害技术的要点在于经济实用,根据危险性定量评估的结果选用相应的防护技术是防灾减灾工作的根本内容和努力方向。我们知道,粉体工业生产中可能产生静电灾害的典型静电放电类型有6 种:(1)电晕放电;(2)普通刷形放电;(3)料仓堆表面放电;(4)人体放电;(5)火花放电;(6)传播型刷形放电。理论分析与实验结果表明,这些不同形态的放电形式点燃可燃物的能力大不相同。另一方面,可能存在于粉体工业实际生产中的可燃物大多为可燃粉体(颗粒、粉末、粉尘)、可燃气以及它们的杂混合物,这些可燃物的被点燃性能差异也很大。所以,我们在研究开发防粉体静电灾害技术的具体工作中,应在粉体静电危险性合理分级的基础上,遵从既科学合理、又经济实用的防灾减灾原则

4.1 粉体静电危险性分级方法

有关粉体静电危险性分级,有别于静电危险场所的分级。粉体危险性分级的目的在于结合安全经济学原理,为存在粉体静电危险性场所选用既经济实用又科学合理的防静电灾害措施提供科学依据.这方面的工作可参照相关的静电危险场所分级方法[24,26,41,44],以粉体静电实际危险性为基础,结合粉体静电可能造成的灾害程度作为分级依据来进行

4.2 防粉体静电灾害技术

粉体静电防灾的应用技术研究,目前从相关物体的静电泄漏技术、粉体静电消电技术、泄爆技术、阻爆与隔爆技术,到可燃物质的惰化与抑爆技术等,基本上能够满足实际生产的需要。但有时候由于片面追求经济效益等方面的原因,有些成熟的粉体静电防灾技术并不能被粉体生产厂家所接受;或由于维护方面的原因,有些已选用的粉体静电防灾设施,并未在实际生产中发挥其应有的作用;所以粉体静电防灾技术的研究与开发任重道远,新技术的开发与已有技术的优化,尚有很多工作要做。概括地说,有关粉体生产防静电灾害应用技术的研究开发,从控制危害源因素和防灾减灾作用的角度考虑,已经形成了以下两大类以降低粉体静电危险性为目的的工程应用技术[27—33]:一类是以控制粉体静电起电量(改变接触起电介质的材料特性,采用粉体消电措施,采取防静电涂层与合理接地加速静电泄放等)、控制放电类型(如防止形成击穿场强较大的绝缘层,避免产生能量大的传播型刷形放电等)为目的所采用的技术;另一类是以控制可燃物点燃特性(如加强通风,可燃气置换,控制切粒所形成的细微粉尘,注入惰性物质等)为目标而采取的技术措施。目前我国有关部门正在计划制定有关的粉体防静电灾害操作规程[34—37]。值得注意的是,在特定条件下,由于粉体生产过程的工艺条件或环境条件的限制,粉体静电放电火花有可能点燃、引爆可燃物质,为了减缓灾害的破坏性,防止灾害的进一步扩大,应采取防灾减灾措施。主要的应用技术有阻爆、隔爆、泄爆和抑爆技术等,以及与之配套的可燃气、可燃粉尘的温度和压力等监测监控技术。目前,静电源监测相结合的粉体静电防爆减灾控制体系正在完善之中

5 结束语

综上所述,有关粉体静电危险性与防静电灾害技术方面的研究工作涉及面广、任务繁杂,难度较大。本文仅就其中的有关方面,结合作者近年来所做的有关具体研究工作,进行了相关专题的调查研究与统计分析,介绍了粉体工业生产中的静电危险性分析方法与防静电灾害技术的最新研究成果,有关研究结果近年来已经陆续应用于粉体工业的具体生产实际,解决了企业安全生产中的有关技术难题,取得了良好的社会效益与经济效益。作者希望有关粉体静电测试研究方法、粉体静电起电与放电研究方法、粉体静电危险性评价方法、粉体静电危险性分级理论与粉体防静电灾害技术措施等重要研究结果,在今后的研究与具体应用实践工作中得到进一步的完善、补充和检验。

参考文献

[ 1 ] Wang Dong-yan.Hazards and control countermeasures in China.In : Proceedings of the 6th international colloquium on dust explo2 sions.Shenyang : Northeastern University Pre , 1994.1

[ 2 ] 刘尚合, 刘直承, 魏光辉等.静电理论与防护.北京: 兵器工业出版社, 1999.10 [Liu S H, Liu Z C , Wei G H etal.Electrostatic theory and protection.Beijing : Publishing company of weapon industry , 1999.10(in Chinese)] [ 3 ] 中国科协学会工作部.工业粉尘防爆与治理.北京: 科学出版社, 1990.7 [ Standing Department of CSCA.Explosion protection and prevention for industrial dusts.Beijing :SciencePre , 1990.7(in Chinese)]

[ 4 ] 刘尚合, 谭伟.物理, 2000 , 29(5): 304 [Liu S H, TanW.Wuli(Physics), 2000 , 29(5): 304(in Chinense)]

[ 5 ] 孙可平.物理, 2000 , 29(6): 364 [ Sun K P.Wuli(Physics), 2000 , 29(6): 364(in Chinese)] [ 6 ] 谭凤贵, 周本谋.对瑞士等国粉体静电爆炸与防护研究的考察.见: 马峰编.现代静电技术.西安: 西安出版社,1999.142 [ Tan F G, Zhou B M.Investigation of the powder

electrostatic hazards and protection in Europe.In : Ma F ed.Modern technology of electrostatics.Xian : Xi′an Pre , 1999.142(in Chinese)]

[ 7 ] 周本谋.中国粉体技术, 2002(8): 138 [ Zhou B M.Chi2nese powder science and technology , 2002(8): 138(in Chinese)]

[ 8 ] Watson P K.Journal of Electrostatics , 1997(43): 67 [ 9 ] Bailey A G.Journal of Electrostatics , 1993(30): 168 [10 ] Jones T B et al.Journal of Electrostatics , 1999(22): 231

[11 ]Juliusz B G.Journal of Electrostatics , 1994(32): 297 [12 ]Juliusz B G.Journal of Electrostatics , 1997(42): 231 [13 ]Baani L et al.Journal of Electrostatics , 1997(41): 401

[14 ]Schwenzfeuer K.Journal of Electrostatics , 1997(40&41): 383 [15 ] Maurer B et al.Journal of Electrostatics , 1989(23): 25 [16 ]Glor M et al.Journal of Electrostatics , 1989(23): 35 [17 ]Glor M.Journal of Electrostatics , 1997(40): 511

[18 ] 谭伟.静电放电辐射场的研究进展.见: 马峰编.现代静电技术.西安: 西安出版社, 1999.30 [ Tan W.Research developments in ESD radiation field.In : Ma F ed.Modern technology of electrostatics.Xi′an : Xi′an Pre , 1999.30(in

Chinese)] [19 ] 黄九生.军械工程学院学报, 2000(增刊), 12 : 260

[ Huang J S.Journal of ordnance engineering college , 2000(Supp.Aug.2000), 12 : 260(in Chinese)]

[20 ]Siwek R et al.Safety Progre , 1995 , 14 : 107

[21 ] Zhou B M et al.A new type of movable electrode electrostatic ignition energy apparatus.In : Proceedings of the 6th international colloquium on dust explosions.Shenyang : Northeastern University Pre , 1994.257 [22 ] Piotr Wolanski et al.Minimum explosive concentration of dust air mixtures.In : Proceedings of the 6th international colloquium on dust explosions.Shenyang : Northeastern University Pre , 1994.206

[23 ]Glor M.Journal of Electrostatics , 1996(30): 123

[24 ]Glor M et al.Lo prevention and safety promotion in the proce industries , 1996 , 11 : 44 [25 ] Jones T B , Chan S.Journal of Electrostatics , 1993(22): 199

[26 ] GJB2527295.弹药防静电要求.国防科技委.[ GJB2527295.Electrostatic protection measures for ammunition.STC of national defence.(in Chinese)]

[27 ] ISSA Prevention Series No.2017(E).Static Electricity(Ignition hazards and protection

measures).D269115 Heidelberg , Germany , 1996 [28 ]Siwek R.Journal of Lo Prevention , 1996 , 9 : 81 [29 ] Moore P E.Journal of Lo Prevention , 1996 , 9 : 3 [30 ] Moore P E.Journal of Lo Prevention , 1997 , 9 : 13

[31 ]Crowhurst D et al.Journal of Lo Prevention , 1997 , 9 : 113 [32 ]Vogl A.Journal of Lo Prevention , 1996 , 3 : 17

Siwek R.Latest development in explosion protection technology.In : Proceedings of the 6th international colloquium on dust explo2sions.Shenyang : Northeastern University Pre , 1994.35 [34 ] VDI Guideline 2263 : Dust fires and dust explosions.Hazards Aement Protection measures ,Beuth , Berlin and Koln , May 199

[35 ] ISO/ DIS 6184 : Explosion protection system2Part1 : Determination of explosion indices of combustible dusts in air.International Organization for Standardization , 1985

[36 ] ISO/DIS 6184 : Explosion protection system2Part2 : Determination of explosion indices of combustible gases in air.International Organization for Standardization , 1985

[37 ] ISO/ DIS 6184 : Explosion protection system2Part3 : Determination of explosion indices of combustible feul/ air mixtures other than dust/ air and gas/ air mixtures.International Organization for Standardization , 1985

[38 ] Guideline VDI 3673 , Part 1 : Preure release of dust explosions.Beuth , berlin , July 1995 [39 ] NFPA 68 : Venting of deflagrations.1978 and 1988 edition , National Fire Protection Aociation , Quincy , Maachusetts , USA

网址:http://www.xiexiebang.com/

机械助理工程师专业技术总结

机械毕业实习专业技术总结

机械工程师专业技术总结(共4篇)

机械方面专业技术总结(共8篇)

专业技术工作总结中级职称 机械

《专业技术工作总结中级职称 机械.docx》
专业技术工作总结中级职称 机械
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
相关文章
猜你喜欢