大文斗范文网会员为你整理了“正负数优秀教案”5篇范文,希望对你有参考作用。
篇1:小学数学四年级《正负数》教案优秀
教学目标:
1、在熟悉的生活情境中,进一步体会负数的意义。
2、会用正负数的有关知识解决简单的实际问题,知道正负可以互相抵消,会解决正负相差的问题。
3、进一步培养学生的观察,分析,提出问题和解决问题的能力。
教学重点:
进一步体会正负数表示的是具有相反意义的量,能运用抵消的思想处理数学问题。
教学准备:
课件,练习纸
教学过程:
一、游戏感知正负数可以互相抵消。
1、师生游戏
师:同学们,剪刀石头布的游戏玩过吗?(玩过)好,我们就来玩玩,谁愿意和我玩?
(师生游戏,其它学生当裁判,并要求做好记录)
师:谁来说说你的记录结果,你认为谁赢了?
师:比赛的时候还要给比赛双方记录成绩,你认为怎样记录成绩好呢?
(揭示课题)
出示评分规则:胜一局记1分,平一局记0分,负一局记-1分。
【联系学生实际,创设情境,体验负数在生活中产生的必要性,调动学生学习的自主性和能动性。】
(师生共同记录比赛成绩)
师:现在我俩的得分分别是多少?
师:你是怎样想?
生:+1和-1可以互相抵消?
师:抵消是什么意思?抵消的结果是多少?
2、生生游戏
师:你们想自己玩一次吗?两人一组,3局定胜负,必须有一人记录成绩。
(学生活动)
(反馈比赛结果)
3、深入了解抵消的应用
师:如果老师想反败为胜,你认为老师至少还要胜几场?
师:这时两人得分分别是多少?你是怎样想的。
师:除了像+1和-1,+2和-2这样的数相抵消结果为0,你还能举出这样的例子吗?
师:+5和-3,-5和+3还能互相抵消吗?
小结:意义想反的两个数,我们可以用正负数来表示,把正数和负数合并起来,我们可以采用抵消的方法进行计算。
【让学生在游戏中体验正负数的意义,理解抵消在正负数计算中的应用,从而使机械的数学计算变得有趣。教师在数学学习中只是起着组织者、引导者、合作者的作用。】
二、从时间轴上求正负数的相差数。
(课件出示:天宫神八交会对接)
师:从这张图片你看明白了什么?
师:你知道太空人两餐相差多长时间吗?
师:你还能提出新的问题吗?
【密切联系学生的生活实际,创设有趣、现实的情境,并以别开生面的“神八、天宫一号太空一吻”的场面,让学生感受生活中的负数所表示的意义,并通过学生自主讨论、合作交流、不断探索以获得数学知识,充分发挥了学生的主体地位,使学生感悟到数学应用于生活,达到学以致用的目的。】
三、综合运用知识,解决正负数问题
师:生活中除了赢分和输分这样的量可以用正负来表示,你还能举出这样的例子吗?
师:正负数在生活中的应用很广泛,只要你用心感受,那么它就在你的身边。
(课件出示:一个11岁儿童的标准身高150厘米我们把它记作0,想一想你的身高是多少,应记作什么?)
(学生思考后,全班反馈)
出示表格。
(1)完成表格。
(2)求这一组同学的平均身高。
方法一:(150+145+157+155+148)÷5=151(厘米)
方法二:(0-5+7+5-2)÷5+150=151(厘米)
(3)比较两种方法
(4)仔细比较上面的数据,你有什么新发现?
(5)认识数轴。
【知识的巩固在情境中不知不觉地进行并具有层次性,由自己的身高引入小组成员的身高,由实际向高引向正负数的记录,由正负数的记录又回到实际身高。在求身高的平均数时,通过两种计算方法的比较体现了正负数抵消的优越性,从而使学生“人人学到有价值的数学”。在两组数据的比较中,学生主动去思考、去探索,感受到正负数的大小及相差数。可以说习题设计上具有趣味性和可探究性的特点。数轴的引入,重视对学生数感的培养,并形成认知结构。】
四、课堂小结
师:通过这节课的学习,你有什么收获?
篇2:小学数学四年级《正负数》教案优秀
教材内容:
教材的地位和作用这部分内容是学生已经认识了自然数,并初步认识了分数和小数的基础上,结合熟悉的生活情境,初步认识负数。通过教学,一方面可以适当拓宽学生对数的认识,激发进一步学习的愿望;另一方面也为学生在第三学段进一步理解有理数的意义以及进行有理数运算打下基础。
教学目标:
①收集生活素材来渗透负数的概念。引导学生初步理解正、负数可以表示两种相反意义的量。
②能正确地读写正数和负数,知道0既不是正数也不是负数。
③初步学会用负数表示一些日常生活中的实际问题。对正数、0、负数之间的大小有个直观的认识。
④感受数学在实际生活中的作用,培养自主探求新知的良好品质及实际应用能力。
学者分析:
本班有学生62人,大部分属于中上水平,学生已经具有一定的认知水平,他们好奇心强,具有创新和知识的迁移能力。
教学策略:
(1)通过丰富多彩的现实生活情景,帮助学生了解负数的意义。负数的产生和发展源于生活的需要。因此,教学本节课应注意为孩子们提供众多丰富的生活中的正负数现象,既让学生引起探究的兴趣,又让学生感受到数学就在生活中,体验到数学的无穷魅力和价值。
(2)借助直观手段理解相反的分界点与“0”的关系。本课的难点在于学生不容易理解负数、正数与0的关系。如何突破难点,直观教学手段是关键。这其中温度计的观察和海拔图的使用,可以有效地帮助学生逐步从直观到半直观再过渡到比较抽象地认识到它们三者之间的关系。
(3)开展有层次的探究活动,引领学生主动建构,发展学生的数学思维能力。
教学过程:
一、复习
1、复印存折明细记录贴入,观察支出(—),存入(+),这一栏的数各表示什么意义?
“+”表示()
“_”表示()
他们表示的意思是()
{填相同还是相反}
2、上网收索今天的天气预报,记录哈尔滨,和福州的气温数据。
哈尔滨()表示—--------------------------------------------
福州()表示—--------------------------------------------
它们是以()度为基准,例如:+16°表示--------------+16°表示--------------
—16°与—16°表示两个()意义的量。
哪个地方的气温高,哪个地方的气温低?
比较:+16°()—16°{填>,<或 p=“p”>
3、带有“+”的数有-------------叫----数
带有“-”的数有-------------叫----数
+16读作--------------------—16读作
4、思考:0是正数还是负数?
5、收集生活中不同用法的负数,并说说表示什么?
二、讲授新课
1、检查
(1)+500表示存入500,—500表示支出500,它们表示的意思是(相反){填相同还是相反}
(2)打开天气预报图
哈尔滨(—9°~~~—19°)表示—----今天气温零下9度到零下19度之间,气侯寒冷,下雪,结冰。------
福州(11°~~~~~6°)表示—----今天气温零上11度到零上6度之间,气侯较温暖,看不见下雪,结冰的现象。------
它们是以(0)度为基准,例如:+16°表示--零上16度-----—16°表示----零下16度----
+16°与—16°表示两个(相反)意义的量。
哪个地方的气温高,哪个地方的气温低?
补充:认识数轴表示
—160+16
(3)生汇报
带有“+”的数有-------------叫正数注:也可省略“+”号
带有“-”的数有-------------叫负数注:不可省略“—”号
+16读作-正十六-------—16读作—负十六--------
(4)0是正数还是负数?把你的思考与小组交流,讨论。然后小组汇报。
总结:0既不是正数也不是负数,它是正负数的分界点。
(5)、举生活中正负数的例子
例如:盈利与亏选,上车人数与下车人数,地上成数与地下层数,水位升高与下降,相反方向的距离等。
学完这节学生还有疑难问题吗?,提出,由同学,小组解决,最后困难由老师及时解答。
篇3:小学数学四年级《正负数》教案优秀
教学内容:
教材第2页例1、例2、例3,做一做及练习一第1-3题。
教学目标:
1.在熟悉的生活情境中初步认识负数,理解负数的意义,能正确的读写正数和负数,知道0既不是正数也不是负数。会用负数灵活地表示一些实际问题,能比较熟练地在数轴上找到正数、0和负数所对应的点。
2.借助熟悉的生活情境经历负数产生的过程,体会负数的意义。具有数形结合的意识,深刻体会数轴形成的过程。
3.激发学生对数的认识的兴趣,感受负数与生活的密切联系。
教学重点:
理解负数的意义,会用正数、负数表示生活中的相反的量。
教学难点:
理解相反意义的量和对0的认识。
教学准备:
课件
教学过程:
一、认识负数
(1)情境激疑
同学们,刚才一上课大家就做了一组相反的动作,想想看,是什么?
今天这节课咱们就从“相反”这个话题开始聊起:在咱们的生活中有很多的相反现象,比如太阳每天东升西落、车站上人们上车下车……
你能再举几个这样的例子吗?
顺着这位同学的思路继续往下聊,走进数学你又有什么发现?
1.今年开学,四年级转入15名同学,五年级转出15名同学。
2.在剪刀、锤子、布活动中,男同学赢了3次,女同学输了1次。
3.李叔叔做生意,三月份亏了3000元,四月份赚了8000元。
怎样用数学的形式来表示这些意义相反的量呢?出示。
要求:简洁,是让别人也能一目了然。
汇报,可能有以下情况。
①直接表示(简洁但不明了)
②用文字表示(明了又不够简洁)
③用符号表示(简明、清楚,一目了然)
小结:现在人们就是用这种形式来区分意义相反的量的。
(2)认识正、负数。
你知道像这样的数,叫什么数吗?
举个例子来说?+3你会读吗?
像(—2)这样的数呢?
怎么读呢
师介绍:加号在这里叫做正号,减号叫
做负号。正数和负数表示意义相反的量。
练习:读出下面的数
-100、+6.8、-1.8、36
为了简便,+36可以写为36。也就是说通常情况下正号都可以省略。师板书。
得出:正数有无数个,负数也有无数个,用……来表示。
二、丰富新知,介绍负数历史。
同学们,我们今天从“相反”这个词聊起认识了负数这个新朋友。其实对于负数的认识,在咱们中国有着悠久的历史。古代的人,遇到这样问题的时候,也想出了不同的方法。你想知道吗?(课件演示或学习第4页你知道吗?)
听完介绍后你有什么感受?
接下来再让我们回到生活中,找一找在咱们身边又有哪些负数?(板书课题:负数)
三、生活中的应用
1.在温度计上认识负数
我的一位朋友喜爱出门旅游,这是他所定的几个备选城市,我帮他留意了一下气温情况,一起来看一下
(1)(多媒体播放城市天气预报:哈尔滨-15--3℃,北京-5-5℃;上海0-8℃;海口12-20℃)
得出:0℃的作用十分重要,它正好是零上温度和零下温度的分界点,换句话说也就是正数和负数的分界点,所以它既不是正数也不是负数。
(板书0,并用集合圈将正数、负数、0进行分类)
那你知道0度是怎么来的吗?
介绍:瑞典天文学家摄尔秋思,他把自然状态下的水刚开始结冰时的温度,规定为0℃。
(2)温度计。
生活中用什么工具来测量温度吗?(课件示:生活中常用的温度计)
介绍:摄氏度、华氏度,每格代表1℃。
2.电梯里的负数
叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(5、-2)
5和-2是以什么为分界点的呢?
3.海拔高度中的负数
世界峰珠穆朗玛峰比海平面高出8844.43米。如果把这个高度表示为+8844.43米,那么比海平面低155米的新疆吐鲁番盆地的`高度应表示为()米,海平面的高度为()米。
练习
如果大雁向南飞30米记作+30,那么向北飞50米记作()。
如果体重增加4千克用+4表示,那么-1.5表示()。
4.数轴上的负数
出示例3
你能在一条直线上表示出他们运动后的情况吗?(强调以谁为分界点,以什么方向为正。两种说法)
指出:在一条直线上,确定了0(原点)、正方向和单位长度,就形成了一条数轴,刚才大家所说的就是数轴的形成过程。
现在你能在数轴上找到他们运动后的位置吗?
完成练习
(2)如果小华的位置是+11米说明她是向()行()米。(指出+11的位置,体会数轴是无限长的。)
(3)如果小刚先向东行5米,又向西行8米,这时小刚的位置为()米。
(分层拓展)
5.运动场上的负数
刘翔在第十届世界田径锦标赛半决赛中110米栏的成绩是13秒42,当时赛场的风速是每秒-0.4米,你知道风速每秒-0.4米的意思吗?
四、小结
今天我们一起认识了负数,了解负数在生活中的一些作用,其实在我们的生活中负数还有更加广泛的用途等待着大家继续去了解。
篇4:初中数学正负数教案
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8<—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。
在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。
初中数学正负数教案
篇5:初中数学正负数教案
教学目的
1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.
2.通过运算,培养学生的运算能力.
教学重点与难点
重点:熟练应用法则进行加法运算.
难点:法则的理解.
教学过程
(一)复习提问
1.有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-3与-2;|3|与|-3|;|-3|与0;
-2与|+1|;-|+4|与|-3|.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.
(三)进行新课 (板书课题)
例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.
为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
1.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8
用数轴表示如图
从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
总之,同号两数相加,取相同的符号,并把绝对值相加.
例如,(-4)+(-5),……同号两数相加
(-4)+(-5)=-( ),…取相同的符号
4+5=9……把绝对值相加
∴ (-4)+(-5)=-9.
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(-20)+(-13)=?
(3)
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.
就是 5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.
就是 3+(-5)=-2.
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
例如(-8)+5……绝对值不相等的异号两数相加
8>5
(-8)+5=-( )……取绝对值较大的加数符号
8-5=3 ……用较大的绝对值减去较小的绝对值
∴(-8)+5=-3.
口答练习
用算式表示:温度由-4℃上升7℃,达到什么温度.
(-4)+7=3(℃)
3.一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数.
总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.
每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.
(四)例题分析
例1 计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)
解:
解题时,先确定和的符号,后计算和的绝对值.
(五)巩固练习
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活动
题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;
(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;
(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;
(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?
参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:
(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5这五个数的前面添加负号,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我们就有多种调整的方法,如将-8与+6变号,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为
为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).
同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.
此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.
掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.